RECOVERY OF EDGES IN SIGNALS AND IMAGES BY MINIMIZING NON-CONVEX OBJECTIVE FUNCTIONS

Mila Nikolova

CMLA—ENS de Cachan, 61 av. du Président Wilson, 94235 Cachan cedex (nikolova@cmla.ens-cachan.fr)

BIRS 2004, Banff

Outline

- 1. Regularized cost function = Data-fidelity + Regularization
- 2. Illustration on \mathbf{R}
- Either Shrinkage or Enhancement of the Differences Smooth and Non-smooth at Zero Potential Functions The Truncated Quadratic and the "0-1" Functions
- Selection for the global minimizer
 Smooth and Non-smooth at Zero Potential Functions
 The Truncated Quadratic and the "0-1" Functions
- 5. Comparison with Convex Edge-Preserving Regularization
- 6. Numerical Experiments
- 7. Concluding Remarks

1. Regularized cost-function

Recover signal or image $\hat{x} \in \mathbb{R}^p$ from data $y = Ax + \mathsf{noise} \in \mathbb{R}^q$ by minimizing $\mathcal{F}(., y)$

$$egin{array}{rcl} \mathcal{F}(x,y)&=&\|Ax-y\|^2+eta\Phi(x)\ \Phi(x)&=&\sum_{i\in J}\!arphi(g_i^Tx), &\#J=r \end{array}$$

- A linear operator (blur, projection, wavelet, ...), $A^T A$ invertible
- $\{g_i^Tx:i\in J\}$: differences between adjacent neighbors if x 1-D signal, $g_i^Tx=x_{i+1}-x_i$
- $\varphi: \mathbf{R} \to \mathbf{R}_+$ potential function, Φ regularization, $\beta > 0$ parameter

$$\begin{split} \varphi(t) &= t^{\alpha}, \ 0 < \alpha \leq 2 \qquad \varphi(t) = \sqrt{\alpha + t^2} \\ \varphi(t) &= \log(\cosh(t/\alpha)) \qquad \varphi(t) = 1 - \exp(-\alpha t^2) \\ \varphi(t) &= \alpha t^2 / (1 + \alpha t^2) \qquad \varphi(t) = \alpha |t| / (1 + \alpha |t|) \\ \varphi(t) &= \min\{\alpha t^2, 1\} \qquad \varphi(t) = \log(\alpha |t| + 1) \end{split}$$

- Applications: image restoration, segmentation, motion estimation, color reproduction, optical imaging, tomography, seismic and nuclear imaging, etc.

Interpretations of \mathcal{F} : $\begin{cases}
Variational and PDE approach [Rudin92,Black96,Weickert98...] \\
Statistical (Bayesian) methods [Geman85,Besag86,Li95...]
\end{cases}$

Our ambition: Catch the essential features exhibited by the (local) minimizers \hat{x} of $\mathcal{F}(.,y)$ in connection with the convexity of Φ

Point of interest: the recovery of edges in \hat{x}

Few theoretical results when φ is non-convex N.B.

We analyze the behavior of the (local) minimizers \hat{x} of $\mathcal{F}(., y)$ under variations of data y \Rightarrow

 $\varphi(t)=\varphi(-t), \ \varphi\in\mathcal{C}^2(0,\infty), \ \varphi'(t)\geq 0, \ \forall t>0, \ \varphi(0)=0$ is a strict minimum $(\exists) \ \theta > 0 \ : \ \varphi^{\prime\prime}(\theta) < 0 \ \Rightarrow \ \varphi^{\prime\prime}(t) \leq 0, \ \forall t \geq \theta \ \text{ and } \ \lim_{t \to \infty} \varphi^{\prime\prime}(t) = 0$ $\varphi~$ is smooth at 0 φ is nonsmooth at 0 arphi is $\mathcal{C}^2, \ \exists au > 0 \ : \ arphi^{\prime\prime}(t) \geq 0, \ orall t \in [0, au] \qquad arphi^{\prime}(0^+) > 0$ $\exists \mathcal{T} > \tau : \varphi'' \begin{cases} \text{decreasing on} & [\tau, \mathcal{T}] & \varphi'' \text{ increasing on} & [0, \infty) \\ \text{increasing on} & [\mathcal{T}, \infty) & \end{cases}$ $\varphi(t) = \alpha t^2 / (1 + \alpha t^2)$ $\varphi(t) = \alpha |t| / (1 + \alpha |t|)$ -1 0 -1 1 0 1 $\varphi''(t)$ $\varphi^{\prime\prime}(t)$ 20

-1

0

1

2. Illustration on R

$$\mathcal{F}(x,y)=(x-y)^2+etaarphi(x), \;\; x,y\in \mathbf{R}$$

 $arphi'(0^+)>0$

$$(\boldsymbol{\theta_0}, \boldsymbol{\theta_1}) = \left\{ t \in (0, \infty) : \varphi''(t) \le -2/\beta \right\}$$

 $\mathcal{F}_{y}^{\prime\prime}(x) < 0, \ \forall x \in (\theta_{0}, \theta_{1}) \Rightarrow$ No local minimizer lies in (θ_{0}, θ_{1}) for any y > 0

$$h_0= heta_1+rac{eta}{2}arphi'(heta_1)$$
 and $h_1= heta_0+rac{eta}{2}arphi'(heta_0^+)$

- $|y| \le h_1 \implies \text{local minimizer } |\hat{x}_0| \le \theta_0 \ (=0 \text{ if } \varphi'(0^+) > 0)$ (strong smoothing)
- $|y| \ge h_0 \implies \text{local minimizer } |\hat{x}_1| \ge \theta_1$ (loose smoothing)

• $\exists h \in (h_0, h_1)$ $\begin{vmatrix} y \\ \leq h \end{vmatrix} \Rightarrow$ the global min $= \hat{x}_0$ (strong smoothing) $|y| \geq h \Rightarrow$ the global min $= \hat{x}_1$ (loose smoothing)

For y = h the global minimizer jumps from \hat{x}_0 to \hat{x}_1 \equiv decision on the degree of smoothing

Main Results

I. $\exists \theta_0 > 0$ and $\theta_1 > \theta_0$ (strictly) $\hat{x} = (ext{local}) ext{ minimizer of } \mathcal{F}_y \quad \Rightarrow \quad \left| ext{ either } |g_i^T \hat{x}| \leq heta_0 ext{ or } |g_i^T \hat{x}| \geq heta_1, ext{ } orall i \in J
ight.$ If $\varphi'(0^+) > 0$ then $\theta_0 = 0$ $\widehat{J}_0 = \left\{ i \in J : \left| g_i^T \hat{x} \right| \le \theta_0 \right\} \quad \text{and} \quad \widehat{J}_1 = \left\{ i \in J : \left| g_i^T \hat{x} \right| \ge \theta_1 \right\}$ the homogeneous regions the edges If $\varphi'(0^+) > 0$ and $\{g_i\}$ —1st-order differences then homogeneous regions are constant **II.** $\{g_i\}$ —1st-order differences $\mathbb{1}_{\Sigma}[i] = \left\{egin{array}{cccc} 1 & ext{if} & i \in \Sigma & ext{Original} & : & h\mathbb{1}_{\Sigma}, \ h > 0 \ 0 & ext{if} & i \in \Omega \setminus \Sigma & ext{Data} & : & y = hA\mathbb{1}_{\Sigma} \end{array}
ight.$ $\hat{x} = ext{global}$ minimizer of \mathcal{F}_y $\exists h_0 > 0$ and $h_1 > h_0$ $egin{array}{rcl} h\in(0,h_0) &\Rightarrow & ert g_i^T\hat{x}ert \leq heta_0, \ orall i\in J \end{array}$ $h > h_1 \qquad \Rightarrow \quad \hat{x} \approx h \mathbb{1}_{\Sigma} \quad (|g_i^T \hat{x}| \ge \theta_1, \quad \forall i \in J_1)$

 $\exists \zeta > 0 \; : \; \mathcal{F}_y(\hat{x}) \leq \zeta, \; \; orall h > 0$

3. Either Shrinkage or Enhancement of the Differences

3.1 Smooth at Zero PFs

Theorem 1

$$\mathcal{F}(x,y) = \|Ax - y\|^2 + \beta \sum_i \varphi(g_i^T x)$$

- φ is \mathcal{C}^2 and nonconvex as assumed
- $\{g_i\}$ is linearly independent and $\mu = \max_{i \in J} \|G^T (GG^T)^{-1} e_i\|$

(i)
$$\beta > \frac{2\mu^2 \|A^T A\|}{|\varphi''(\mathcal{T})|} \Rightarrow \exists \theta_0 \in (\tau, \mathcal{T}) \text{ and } \theta_1 > \mathcal{T} :$$

 \mathcal{F}_y has a (local) min. at $\hat{x} \Rightarrow$ either $|g_i^T \hat{x}| \le \theta_0$ or $|g_i^T \hat{x}| \ge \theta_1$, $\forall i \in J$ (*)

(ii) $\theta_0 \in (\tau, \mathcal{T}), \varphi''(\theta_0) < 0 \implies \exists \theta_1 > \mathcal{T}, \exists \beta_1 \text{ such that } [\beta > \beta_1 \implies (\star) \text{ holds }]$ The same holds if we interchange θ_0 and θ_1

(iii) $\theta_1 - \theta_0$ increases with β

Proof: if $|g_i^T \hat{x}| \in (\theta_0, \theta_1)$ then $\exists u \in \mathbb{R}^p$ such that $D_1^2 \mathcal{F}(\hat{x}, y)(u, u) < 0 \Rightarrow$ no minimum at \hat{x} \Rightarrow Thresholds θ_0 and θ_1 are pessimistic

("true $heta_0$ "; $heta_0$ and "true $heta_1$ "; $heta_1$)

 $\{g_i^T\}$ linearly independent if x is a signal

Difficult to extend to images (the directions where $D_1^2 \mathcal{F}(\hat{x}, y)(u, u) < 0$ depend on \hat{x}) Conjecture that remains true: for $g_i^T \hat{x} \approx \mathcal{T}$, \mathcal{F}_y is likely to be concave there

Truncated Quadratic PF
$$\varphi(t) = \min\{\alpha t^2, 1\}$$
Notations: $P = I - \frac{1}{\|A1\|^2} A1(A1)^T$ $u_i[j] = \begin{cases} 1 & \text{if } j = 1, \dots, i \\ 0 & \text{if } j = i+1, \dots, p, \end{cases}$ $\forall i = 1, \dots, p$ Theorem $\mathcal{F}(x, y) = \|Ax - y\|^2 + \beta \sum_{i=1}^{p-1} \varphi(x_{i+1} - x_i)^2$

 $\begin{aligned} \mathcal{F}(.,y) & \text{has a global minimum at } \hat{x} & \Rightarrow \quad \forall i = 1, \dots, p-1 \\ \bullet PAu_i &= 0 \quad \Rightarrow \quad \hat{x}_{i+1} = \hat{x}_i \\ \bullet PAu_i &\neq 0 \quad \Rightarrow \quad \text{either } |\hat{x}_{i+1} - \hat{x}_i| \leq \frac{\Gamma_i}{\sqrt{\alpha}} \quad \text{or} \quad |\hat{x}_{i+1} - \hat{x}_i| \geq \frac{1}{\sqrt{\alpha}\Gamma_i} \\ \Gamma_i &= \sqrt{\frac{\|PAu_i\|^2}{\alpha\beta + \|PAu_i\|^2}} < 1 \quad (\text{independent of data } y) \\ \text{Strict inequalities if unique global minimizer} \end{aligned}$

• Bounds adapted to each difference

• Connection with Theorem 1 :
$$\theta_0 = \frac{\gamma}{\sqrt{\alpha}} < \theta_1 = \frac{1}{\sqrt{\alpha}\gamma}$$
 for $\gamma = \max_{i \in J} \Gamma_i$

- Can fail if \hat{x} is local \neq global minimizer
- Necessary condition for \hat{x} to be global minimzier

(A) Noisy data y = x * h + n with $h_k = \exp^{-\frac{0.4k^2}{1.4}}$, $|k| \le 5$ and n white Gaussian noise, 10 dB SNR.

Distribution of the differences for 100 signals.

Thresholds $\pm \Gamma_i / \sqrt{\alpha}$, $\pm 1 / \sqrt{\alpha} \Gamma_i$ for i = 1, ..., 127 (—). X-axis: positions of differences i = 1, ..., 127. Y-axis: a dot at position i is the value of the ith difference of a signal.

3.2 Non-Smooth at Zero PFs

Theorem 2

$$\mathcal{F}(x,y) = \|Ax - y\|^2 + \beta \sum_i \varphi(g_i^T x)$$

$$\begin{split} \varphi'(0^{+}) &> 0 \text{ and nonconvex as assumed} \\ (i) \quad \beta > \frac{2\mu^{2} \|A^{T}A\|}{|\varphi''(0^{+})|} \quad \Rightarrow \quad \exists \ \theta_{1} > 0 : \\ \hline \mathcal{F}_{y} \text{ has a (local) min. at } \hat{x} \quad \Rightarrow \quad \text{either } |g_{i}^{T}\hat{x}| = 0 \quad \text{or } |g_{i}^{T}\hat{x}| \geq \theta_{1}, \ \forall i \in J \quad (\star) \\ (ii) \quad \theta_{1} > 0, \ \varphi''(\theta_{1}) < 0 \quad \Rightarrow \quad \exists \beta_{1} \text{ such that } [\ \beta > \beta_{1} \quad \Rightarrow \quad (\star) \text{ holds }] \\ \theta_{1} \text{ increases with } \beta \\ (iii) \quad A^{T}A \text{ invertible. } \quad \exists \eta > 0 \ : \ \|y\| < \eta \quad \Rightarrow \quad \widehat{J}_{0} = \left\{ i \in J : g_{i}^{T}\hat{x} = 0 \right\} \neq \emptyset \end{split}$$

The θ_1 exhibited in the proof is pessimistic

Strong result with no special assumptions

Neat segmentation

N.B. Enhanced stair-casing effect !

Image Reconstruction in Emission Tomography

Original phantom

Emission tomography simulated data

 φ is smooth (Huber function)

 $\varphi(t) = t/(\alpha + t)$ (non-smooth, non-convex)

Reconstructions by minimizing $\mathcal{F}(x,y) = \Psi(x,y) + \beta \sum_{i \sim j} \varphi(|x_i - x_j|)$, $\Psi = \text{smooth, convex}$

"0-1" PF
$$\varphi(0) = 0$$
 and $\varphi(t) = 1$ if $t \neq 0$

Theorem

$$\mathcal{F}(x,y) = \|Ax - y\|^2 + \beta \sum_{i=1}^{p-1} \varphi(x_{i+1} - x_i)$$

 $\mathcal{F}(.,y)$ has a global minimum at $\hat{x} \;\; \Rightarrow \;\; orall i=1,\ldots,p-1$

•
$$PAu_i = 0 \quad \Rightarrow \quad \hat{x}_{i+1} = \hat{x}_i$$

• $PAu_i \neq 0 \Rightarrow | either \hat{x}_{i+1} = \hat{x}_i \text{ or } |\hat{x}_{i+1} - \hat{x}_i| \geq \frac{\sqrt{\beta}}{\|PAHe_i\|}$

Strict inequality if unique global minimizer

- Bounds adapted to each difference
- Connection with Theorem 2 : $\theta_1 = \min_{i \in J} \frac{\sqrt{\beta}}{\|PAHe_i\|}$
- Can fail if \hat{x} is local \neq global minimizer
- Necessary condition for \hat{x} to be global minimizer

4. Selection for the Global Minimizer

Additional assumptions

- $\varphi(t) \leq 1 \; \forall \; t \in \mathbf{R}$
- $\{g_i\}$ —1st-order differences: $g_i^T x = \gamma_i (x_{i_1} x_{i_2})$ (usually $\gamma_i = 1$)
- $A^{T}A$ invertible ($\Rightarrow \exists$ global minimizer)

$$1\!\!1_\Sigma[i] = egin{cases} 1 & ext{if} \ i \in \Sigma & J_1 = \{i \in J: |g_i^T 1\!\!1_\Sigma|
eq 0 \ 0 & ext{if} \ i \in \Omega \setminus \Sigma & J_0 = J \setminus J_1 \ \Omega ext{ the domain of } x, \ \Sigma \subset \Omega ext{ connected w.r.t } \{g_i\}$$

• Original image or signal $= h \mathbb{1}_{\Sigma}, h > 0$ (the scaled characteristic function of Σ)

}

• Data $y = hA1\!\!1_\Sigma$

 \Rightarrow Characterize the global minimizers \hat{x} of \mathcal{F}_y

For every $y \in \mathbf{R}^q$ we denote by \hat{x} a global minimizer of \mathcal{F}_y

4.1 Smooth at Zero PFs

Theorem

$\mathcal{F}(x,y) = \|x-y\|^2 + \beta \sum_i \varphi(g_i^T x)$

$$A = I, \varphi \in \mathcal{C}^{2} \text{ (all assumptions), } \beta > \beta_{0}, (\theta_{0}, \theta_{1}) \text{ as in Theorem 1}$$

$$y = hA \mathbb{1}_{\Sigma}, \quad h > 0 \qquad (*)$$

$$(i) \quad \exists h_{0} > 0 : h \in (0, h_{0}) \quad \Rightarrow \quad |g_{i}^{T} \hat{x}| \leq \theta_{0}, \quad \forall i \in J$$

$$(ii) \quad \exists h_{1} > 0, \exists \sigma > 0 :$$

$$h > h_{1} \quad \Rightarrow \quad \frac{|g_{i}^{T} \hat{x}| \leq \beta \sigma}{|g_{i}^{T} \hat{x}| \geq \max \left\{ \begin{array}{c} h|g_{i}^{T} \mathbb{1}_{\Sigma}| - \beta \sigma, \ \beta \sigma, \ \theta_{1} \right\} \qquad \forall i \in J_{1} \end{array}$$

$$Moreover: \quad \exists \boldsymbol{\zeta} > \mathbf{0} \text{ such that } \mathcal{F}_{\boldsymbol{y}}(\hat{\boldsymbol{x}}) \leq \boldsymbol{\zeta}, \quad \forall h > \mathbf{0} \quad \text{in } (*)$$

- All differences $g_i^T \hat{x}$ for $i \in J_0$ remain bounded by the same constant for all $h > h_1$
- Constants in the proof are pessimistic
- ζ is easy to compute, necessary condition for global minimum

Truncated Quadratic PF $\varphi(t) = \min\{\alpha t^2, 1\}$

Proposition $\begin{aligned}
\mathcal{F}(x,y) &= \|Ax - y\|^2 + \beta \sum_{i \in J} \varphi(g_i^T x) \\
A^T A \text{ invertible} \\
y &= hA \mathbb{1}_{\Sigma}, \quad h > 0 \\
\chi_{\Sigma} &= \left(A^T A + \beta \alpha G^T G\right)^{-1} A^T A \mathbb{1}_{\Sigma} \quad (\text{regularized least-squares for } h = 1) \\
\exists h_0 > 0, \quad \exists h_1 > h_0 \text{ such that} \\
(i) \quad h \in (0, h_0) \quad \Rightarrow \quad \hat{x} = h \chi_{\Sigma} \\
(ii) \quad h > h_1 \quad \Rightarrow \quad \hat{x} = h \mathbb{1}_{\Sigma}
\end{aligned}$

 \hat{x} for $h \in (0, h_0)$ does not contain edges

4.2 Non-Smooth at Zero PFs

Theorem	$\mathcal{F}(x,y) = \ x - y\ ^2 + \beta \sum_i \varphi(g_i^T x)$
$\varphi'(0^+) > 0$, nonconvex as assumed, bounded, $A = I$	and $g_i^T x = x_{i_1} - x_{i_2}$
$\beta > \beta_0$ and θ_1 as in Theorem 2	
$y=h\; 1\!\!1_{\Sigma}, \;\; h>0$	(*)
(i) $\exists h_0 > 0 : h \in (0, h_0) \implies \hat{x} = h \frac{\#\Sigma}{p} 1$	
(ii) If $\varphi(\theta_1) \ge (\#J-2)/(\#J-1)$, $\exists h_1 > 0 : h > h$ $\hat{s} \le h \text{ and } \hat{c} \ge 0$	$h_1 \Rightarrow \hat{x} = \hat{s} 1\!\!1_{\Sigma} + \hat{c} 1\!\!1$
$\hat{s} \rightarrow h \text{ and } \hat{c} \rightarrow 0 \text{ as } h \rightarrow \infty$	
Moreover: $\exists \zeta > 0$ such that $\mathcal{F}_y(\hat{x}) \leq \zeta, \ \forall h > 0$ in	n(*)

• $\hat{x} \to h 1\!\!1_\Sigma$ as $h \to \infty$

- Constants in the proof are pessimistic
- ζ is easy to compute, necessary condition for global minimum

"0-1" PF $\varphi(0) = 0$ and $\varphi(t) = 1$ if $t \neq 0$

Proposition

$$\mathcal{F}(x,y) = \|Ax - y\|^2 + \beta \sum_{i \in J} \varphi(g_i^T x)$$

 $A^{T}\!A$ invertible

$$y=hA1\!\!1_{\Sigma}, \hspace{0.2cm} h>0$$

 $\exists h_0 > 0, \ \exists h_1 > h_0 \text{ such that}$ (i) $h \in (0, h_0) \Rightarrow \hat{x} = h \hat{c} \mathbb{1}$ for $\hat{c} = \frac{(A \mathbb{1})^T (A \mathbb{1}_{\Sigma})}{\|A\mathbb{1}\|^2}$ (ii) $h > h_1 \Rightarrow \hat{x} = h \mathbb{1}_{\Sigma}$

Lemma

 $\hat{x} \in \mathbb{R}^p$ is a local minimizer of $\mathcal{F}_y \quad \Leftrightarrow$

 $\begin{bmatrix} \hat{x} \text{ is a solution to the problem:} \\ \text{minimize} & \|Ax - y\|^2 \text{ subject to} \\ & x \in \{u \in \mathbb{R}^p : g_i^T u = 0, \ \forall i \in \widehat{J}_0\} \\ & \widehat{J}_0 = \{i \in J : g_i^T \hat{x} = 0\} \end{bmatrix}$

5. Comparison with Convex Edge-Preserving Regularization

- If \mathcal{F}_y is convex, then differences at the minimum $g_i^T \hat{x}$ can take any value on R
- Convex edge-preserving regularization (TV) creates strongly homogeneous regions (because non-smooth at zero), a fortiori these are separated by sharp transitions (edges) whose amplitude is attenuated
- Edge-detection using φ non-convex is fundamentally different : it relays on the classification of the differences and the jumps of the global minimizer between local minimizers corresponding to different configurations for the edges

6. Illustration

Original image

 $\mathsf{Data}\ y$

Data $y = a \star x + n$, a is blur,

n is white Gaussian noise, $\mathsf{SNR}{=}20~\mathsf{dB}$

7. Conclusions

- Minimizers relevant to non-convex regularization are stable and do involve smoothing
- Non-convex regularization enhances edges
- Differences either smaller than a small threshold, or larger than a large threshold
- Each local minimum corresponds to an edge configuration
- Enhanced stair-casing when φ non-smooth at zero
- Basically different from convex edge-preserving regularization
- Mathematical properties on the relation between the shape of a cost-function and the features of its minimizers are useful...

Papers available at http://www.cmla.ens-cachan.fr/ nikolova/