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1. Regularized cost-function.

Recover signal or image & € R? from data y = Ax + noise € R? by minimizing F(.,y)

F(z,y) = |[Az —y|* + B®(x)
(x) = Y plgiz), #J=r
1e€J

e A linear operator (blur, projection, wavelet, ...), AT A invertible
o {g]/x:i € J}: differences between adjacent neighbors
if & 1-D signal, g;.ra: = T;41 — T;

e ¢ : R — R, potential function, @ regularization, 3 > 0 parameter

p(t) =t% 0<a<2 p(t) = Va+t2

| p(t) = log(cosh(t/a))  o(t) =1 — exp (—at?)
p(t) = at?/(1+at?)  o(t) = alt]/(1 + alt])
o(t) = min{at?, 1} o(t) = log (alt| + 1)




® Applications: image restoration, segmentation, motion estimation, color reproduction,

optical imaging, tomography, seismic and nuclear imaging, etc.

Variational and PDE approach [Rudin92,Black96,Weickert98...]

® Interpretations of F:
Statistical (Bayesian) methods [Geman85,Besag86,Li95...]

Our ambition: Catch the essential features exhibited by the (local) minimizers & of F (., y)
in connection with the convexity of &

Point of interest: the recovery of edges in &

N.B. Few theoretical results when ¢ is non-convex

= We analyze the behavior of the (local) minimizers & of F(.,y) under variations of data y



Assumptions on ¢

p(t) = p(—t), ¢ € C%(0,00), ' (t) >0, Vt >0, ¢(0) =0 is a strict minimum

() 6>0 :

¢ is smooth at O
pisC2, AT >0 : ¢''(t) >0, Vte[0,T]

[T, T]
[T, o0)

decreasing on
37T > T : cp" &

Increasing on

o(t) = at? /(1 + at?)

P’(0) <0 = "(t)<0,Vt>0 and lim ¢'(t) =0

t— oo

¢ is nonsmooth at 0

@' (07) >0

¢’ increasing on [0, co)

p(t) = altl/(1 + alt)




2. Illustration on R'
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F(z,y) = (x —y)’ + Be(z), z,y € R

0o 01

@ (07) >0

(60, 601) = {t € (0,00) : " (t) < —2/B}

F,/(z) <0, V&€ (6p,01) = No local minimizer lies in (6o,01) for any y > 0

ho = 01 + ggo’(ﬁl) and hy = 609 + 5@

B

(%)

local minimizer |29| < 09 (=0 if ¢ (07) > 0)

local minimizer |Z1| > 61

(strong smoothing)

(loose smoothing)



<h = theglobal min =2 strong smoothin
e 3h € (ho, h1) lyl < g 0o ( g g)
lyf > h = the global min=2%; (loose smoothing)

F(z,y) F(z,y)

Each curve =F(x,y) for a different y

For y = h the global minimizer jumps from &g to @i

= decision on the degree of smoothing



Main Results '

I. 360 >0 and 61 > 69 (strictly)

& = (local) minimizer of 7y = either |gi & < 6o or |gi&| > 61, ViEJ

If ¢/ (0F) > 0then 6o =0

sz{iEJ: g?ﬁc’ZGl}

the homogeneous regions the edges

<6} and SH={ieJ:

T/\
g;, L

If ©’(0F) > 0 and {g;}—15t-order differences then homogeneous regions are constant

II. {g;}—15t-order differences

1 if 2€X Original : hls, h >0
Is[2] = Tre reina = > & = global minimizer of JF
0 ifz€e6Q\X Data .y = hAls

dho >0 and hi1 > hg
h € (0,hg) = |gfi| <6, Vied
h > hy = x = hls (|g;FaAZ| > 01, VieJy)

IE>0: Fy(@) <¢ VR>0



3. Either Shrinkage or Enhancement of the Differences.

3.1 Smooth at Zero PF's

Theorem 1 Fx,y) = Az —y|I> + B . (9] x)

e © is C* and nonconvex as assumed

o {g;} is linearly independent and p = ma}( HGT(GGT)_leiH
i€

(1’)6>m¢3 6o € (1,7) and 61 > T :

F, has a (local) min. at & = either |g] | < 6o or g} &| > 01, Vi € J (%)

(ii)) 6o € (1,7), ¢"(0p) <0 = 301 > 7T, 361 such that [ B> 1 = (x) holds]

The same holds if we interchange 6y and 6

(iii) 61 — 6y increases with (3




Proof: if |g] &| € (0o,0:1) then Ju € R? such that D?F(&,y)(u,u) < 0 = no minimum at &
= Thresholds 6y and 6; are pessimistic

(“true 6p"j 0o and “true 61" i61)

{g}'} linearly independent if x is a signal
Difficult to extend to images (the directions where D% F (%, y)(u,u) < 0 depend on %)

Conjecture that remains true: for g/ & ~ 7, F, is likely to be concave there
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Truncated Quadratic PF ¢(t) = min{at?, 1}

1 if j=1,...,i

Notations: P =1 — AL(ADT uilj] = Vi=1,...,p
| ALL||? 0 if j=i+1,...,p,
p—1
Theorem Fla,y) = |Az —y[2+ B o — )
=1

F(.,y) has a global minimum at £ = Vi=1,...,p—1
o PAu; =0 = Tit1 = T4

i or |&; Ti| > !
Ja el = ATy

PAu,| 2 .
r; = \/aﬁ||-|—||PuA1|Li||2 < 1 (independent of data y)

o PAu; 75 0 = either |Cf3i+1 — Cﬁzl <

Strict inequalities if unique global minimizer

e Bounds adapted to each difference

. ) 1
e Connection with Theorem 1 : 6y = e <0 = —— for vy =maxI};

Vo Vary i€J

e Can fail if Z is local # global minimizer

e Necessary condition for & to be global minimzier
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(A) Noisy data y = = * h + n with hy, = exp_OiT,

k| <5 and n white Gaussian noise, 10 dB SNR.
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Differences of the original signals Differences of the global minimizers
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Distribution of the differences for 100 signals.
Thresholds £T"; /v/«a, +1/+y/al’; for i =1,...,127 (—). X-axis: positions of differences i = 1,...,127.

Y -axis: a dot at position 7 is the value of the ith difference of a signal.
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3.2 Non-Smooth at Zero PF's

Theorem 2 Flx,y) = Az -yl + B . (9] x)

©'(07) > 0 and nonconvex as assumed

T
(1) 6 > 2|l;//|(|64+1;l|” = El 91 > 0 .

F, has a (local) min. at & = either |g; 2| =0 or |g/ 2| > 61, Vie J | ()

(ii) 61 >0, ¢"(01) <0 = 3pB1 such that [ B> 1 = (%) holds]

01 increases with (3

(iii) A'A invertible. In >0 : |yl <n = Jo = {’L cJ:gli= 0} #+ 0

The 61 exhibited in the proof is pessimistic
Strong result with no special assumptions
Neat segmentation

N.B. Enhanced stair-casing effect !
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Image Reconstruction in Emission Tomography

Emission tomography simulated data

@ is smooth (Huber function) o(t) =t/(a+t) (non-smooth, non-convex)

Reconstructions by minimizing F(z,y) = V(z,y) + 62 o(|lzi —x4]), ¥ = smooth, convex
inj
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“0-1” PF (0) = 0 and (t) = 1 ift # 0

Theorem Flz,y) = || Az — y||? —l—ﬁzl L P(@it1 — i)

F(.,y) has a global minimum at & = Vi=1,...,p—1
o PAu; =0 = Cf}i_|_1 = Z;

VB

e PAu; #0 = either &;41 = &; or |Biy1 — &i| 2 |IPAHe;|

Strict inequality if unique global minimizer

e Bounds adapted to each difference

e Connection with Theorem 2 : 6; = min \/g
icJ ||PAHe;||
e Can fail if z is local # global minimizer

e Necessary condition for  to be global minimizer
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4. Selection for the Global Minimizer'

Additional assumptions

e p(t) <1VteR

o {g;}—15torder differences: gl © = ~;(x;; — @iy) (usually v, = 1)

o ATA invertible ( = 3 global minimizer )

1 if i€X Ji={i € J:|gl x| #0}

0 if i€cQ\XZ Jo = J\ Ji
Q the domain of &, 3 C € connected w.r.t {g; }

Ix[i] =

e Original image or signal = hll;, h > 0 (the scaled characteristic function of X)
e Datay = hAlyx

= Characterize the global minimizers & of F,

FOR EVERY y € R? WE DENOTE BY £ A GLOBAL MINIMIZER OF F,

17



4.1 Smooth at Zero PF's

Theorem Flz,y) =z —yll* + Bzi p(g] )

A =1, pcC? (all assumptions), 3 > Bo, (00,01) as in Theorem 1

(i) 3ho >0: he (0,hy) = |giz| <6y, VicJ
(ii) 3hy >0, 30 >0 :

9; ©| < Bo Vi € Jo

h>h =
g7 & > max { hlg{ 1g| — Bo, Bo, 61} Vi€

Moreover: 3 ¢ > 0 such that Fy (&) < ¢, Vh > 0 in (x)

e All differences g} & for i € Jy remain bounded by the same constant for all A > h;
e Constants in the proof are pessimistic

e ( is easy to compute, necessary condition for global minimum
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Truncated Quadratic PF ¢(t) = min{at?, 1}

Proposition Fla,y) = [|Az —yl> + B8, ;9] z)

ATA invertible
y=hAls, h >0

Xy = (ATA + ,BaGTG) -1 AT Alls; (regularized least-squares for h = 1)
dho > 0, dhi1 > hg such that

(i) h€ (0,ho) = T=hxs

(i)  h > h1 = o =hI1s

& for h € (0, ho) does not contain edges
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4.2 Non-Smooth at Zero PFs

Theorem Flx,y) = ||z — ?J||2 + Bzi ¢(9?$)

©’(0") > 0, nonconvex as assumed, bounded, A =1 and g} © = xi, — x4,
8 > Bg and 0, as in Theorem 2
y=hi1ls, h>0 ()

(i) 3ho >0 : h € (0,ho) = & =hZ=1

(i) If p(01) > (#J —2)/(#J —1), Ty >0 : h>hy = & =35l + éll
§<handé>0

Ss—handc¢—0ash—

Moreover: 4¢ > 0 such that Fy(&) < , Vh > 0 in (x)

e ¥ — hlly as h — o©
e Constants in the proof are pessimistic

e ( is easy to compute, necessary condition for global minimum
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“0-1” PF ¢(0) =0 and p(t) =1ift#0

Proposition Fla,y) = Az —y|2 + 8, (o7 )

ATA invertible
y=hAls, h >0

dho > 0, dhi1 > ho such that

(i) h € (0,bhg) = &=hél for é= (A]|l|):1§f2]12)

(i) h>h1 = &=hls

Lemma

2 is a solution to the problem:
minimize ||Ax — y||* subject to
r € {ucRP:glu=0, Wejz)}
j:):{iEJ:g;-TﬂfﬁzO}

z € R? is a local minimizer of 7, <
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5. Comparison with Convex Edge-Preserving Regularization

1 100 1 100 1 100

Datay =z +n p(t) = [t] p(t) = alt]/(1+ aft])

o If F, is convex, then differences at the minimum g; & can take any value on R

e Convex edge-preserving regularization (TV) creates strongly homogeneous regions (because
non-smooth at zero), a fortiori these are separated by sharp transitions (edges) whose

amplitude is attenuated

e Edge-detection using ¢ non-convex is fundamentally different : it relays on the
classification of the differences and the jumps of the global minimizer between local

minimizers corresponding to different configurations for the edges
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6. Illustration '

Original image Data y

Data y = a xx + n, a is blur,

n is white Gaussian noise, SNR=20 dB
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(1) = at?/(1+ at?)  (t) = altl/(1 + aft]) ot) = min{at?, 1} o(t) = 1 — I_y)

Row 90
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7. Conclusions .

e Minimizers relevant to non-convex regularization are stable and do involve smoothing
e Non-convex regularization enhances edges

e Differences either smaller than a small threshold, or larger than a large threshold

® Fach local minimum corresponds to an edge configuration

e FEnhanced stair-casing when ¢ non-smooth at zero

e Basically different from convex edge-preserving regularization

e Mathematical properties on the relation between the shape of a cost-function and the

features of its minimizers are useful...
Papers available at  http://www.cmla.ens-cachan.fr/ nikolova/
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