Least squares regularized or constrained by L0: relationship between their global minimizers

Mila Nikolova

CMLA, CNRS, ENS Cachan, Université Paris-Saclay, France nikolova@cmla.ens-cachan.fr

SIAM Minisymposium on Trends in the Mathematics of Signal Processing and Imaging organized by Willi Freeden and Zuhair Nashed

Joint Mathematics Meetings, January 6 - 9, 2016, Seattle

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions
9. Two optimization problems involving the ℓ_{0} pseudo norm

$$
A=\left(A_{1}, \cdots, A_{\mathbf{N}}\right) \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}} \quad \text { (matrix) } \quad \mathrm{N}>\mathrm{M} \quad d \in \mathbb{R}^{\mathrm{M}} \backslash\{0\} \quad \text { (data) }
$$

$\diamond A$ vector $\widehat{u} \in \mathbb{R}^{N}$ is k-sparse if $\|\boldsymbol{u}\|_{0}:=\sharp\{\boldsymbol{i}: \boldsymbol{u}[\boldsymbol{i}] \neq 0\} \leqslant \mathbf{k}$.
One looks for a sparse vector $\widehat{\boldsymbol{u}}$ such that " $A \widehat{\boldsymbol{u}} \approx d$ ".
Two desirable optimization problems to find a sparse \widehat{u} :

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{N}}\|A u-d\|_{2}^{2} \quad \text { subject to } \quad\|u\|_{0} \leqslant \mathbf{k} \tag{k}
\end{equation*}
$$

$$
\mathcal{F}_{\beta}(u)=\|A u-d\|_{2}^{2}+\beta\|u\|_{0} \quad \beta>0
$$

(regularized)
\diamond These are NP hard (combinatorial) nonconvex problems.

Our goal:
Clarify the relationship between the global minimizers of $\left(\mathcal{R}_{\beta}\right)$ and $\left(\mathcal{C}_{\mathrm{k}}\right)$.

Applications: signal and image processing, sparse coding, compression, dictionary building, compressive sensing, machine learning, model selection, classification...
$\|\cdot\|_{o}$ has served as a regularizer or as a penalty for a long time

- Markov random fields, MAP $\mathcal{F}_{\beta}(u)=\|A u-d\|_{2}^{2}+\beta\|D u\|_{0}$ Geman \& Geman (1984), Besag (1986) - labeled images, stochastic algorithms Robini \& Reissman (2012) - global convergence / computation speed (!)
- Subset selection via $\left(\mathcal{R}_{\beta}\right)$ - numerous algorithms - c.f. textbook Miller (2002)
- $\left(\mathcal{C}_{\mathrm{k}}\right)$ - natural sparse coding constraint. Also the best K-term approximation [DeVore 1998)].
- Sparse-Land, $\mathrm{M}<\mathrm{N}$ - strong assumptions on A (RIP, spark, etc.) / various approximations. A huge amount of papers with approximating algorithms, e.g. Haupt \& Nowak (06), Blumensath \& Davies (08), Tropp (10), Zhang et al (12), Beck \& Eldar (14) Typical assumptions: RIP or $\mathrm{K} \operatorname{spark}(A)$ plus others (e.g. bounds on $\|A\|$ etc.)

Important progress in solving problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$. The numerical schemes - common points.
\Longrightarrow Explore the relationship between their optimal sets.

The optimal values / the optimal solution setsof problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$:

$$
\begin{array}{ll}
\left(\mathcal{C}_{\mathrm{k}}\right) & \mathrm{c}_{\mathrm{k}}:=\inf \left\{\|A u-d\|^{2} \mid u \in \mathbb{R}^{\mathrm{N}} \text { and }\|u\|_{0} \leqslant \mathrm{k}\right\} \\
& \widehat{\mathrm{C}}_{\mathrm{k}}:=\left\{u \in \mathbb{R}^{\mathrm{N}} \text { and }\|u\|_{0} \leqslant \mathrm{k} \mid\|A u-d\|^{2}=\mathrm{c}_{\mathrm{k}}\right\} \\
\left(\mathcal{R}_{\beta}\right) \quad & r_{\beta}:=\inf \left\{\mathcal{F}_{\beta}(u) \mid u \in \mathbb{R}^{\mathrm{N}}\right\} \\
& \widehat{\mathrm{R}}_{\beta}:=\left\{u \in \mathbb{R}^{\mathrm{N}} \mid \mathcal{F}_{\beta}(u)=r_{\beta}\right\}
\end{array}
$$

Theorem 1 For any $d \in \mathbb{R}^{\mathrm{M}}: \quad \widehat{\mathrm{C}}_{\mathrm{k}} \neq \varnothing \forall \mathrm{k} \quad$ and $\quad \widehat{\mathrm{R}}_{\beta} \neq \varnothing \forall \beta>0$.

$$
\text { H } 1 \text { Assumption: } \operatorname{rank}(\boldsymbol{A})=\mathbf{M}<\mathbf{N} \quad \text { no further reminder }
$$

How to evaluate the extent of assumption dependent properties ?
Definition 1 A property is generic on \mathbb{R}^{M} if it holds on a subset of $\mathbb{R}^{\mathrm{M}} \backslash S$ where S is closed in \mathbb{R}^{M} and its Lebesgue measure in \mathbb{R}^{M} is null.

A generic property is stronger than a property that holds only with probability one.

$$
\begin{array}{rlr}
-\mathbb{I}_{\mathrm{n}}:=(\{1, \ldots, \mathrm{n}\},<) & \text { and } & \mathbb{I}_{\mathrm{n}}^{0}:=(\{0,1, \ldots, \mathrm{n}\},<) \\
\text { - } \mathrm{L}:=\min \left\{\mathrm{k} \in \mathbb{I}_{\mathrm{N}} \mid \mathrm{c}_{\mathrm{k}}=0\right\} & \text { (totally strictly ordered) } \\
\text { (uniquely defined) } & \text { generically } \mathrm{L}=\mathrm{M}
\end{array}
$$

Main results

There is a strictly decreasing sequence $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}} \equiv\left\{\beta_{\mathrm{J}_{\mathrm{k}}}\right\}$ for $\mathrm{J} \subseteq \mathbb{I}_{\mathrm{L}}$ such that
\widehat{u} is global minimizer of \mathcal{F}_{β} for $\beta \in\left(\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right) \Longleftrightarrow \widehat{u}$ is global minimizer of $\left(\mathcal{C}_{\mathrm{J}_{\mathrm{k}}}\right)$
Equivalently

$$
\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in\left(\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right)\right\}=\widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}}} \quad \forall \mathrm{k} \in \mathrm{~J}
$$

In a generic sense

$$
\widehat{\mathrm{R}}_{\beta_{\mathrm{J}_{\mathrm{k}}}}=\widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}}} \cup \widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}+1}}
$$

- All $\beta_{\mathrm{J}_{\mathrm{k}}}$'s are obtained from the optimal values c_{k} 's of the problems $\left(\mathcal{C}_{\mathrm{k}}\right), \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$.
- The global minimizers of problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ are strict and generically uniques
- J is always nonempty
- For any $\mathrm{n} \in \mathbb{I}_{\mathrm{L}}^{0} \backslash \mathrm{~J}$ the global minimizers of $\left(\mathcal{C}_{\mathrm{n}}\right)$ are not global minimizers of $\left(\mathcal{R}_{\beta}\right) \forall \beta$
- When $J=\mathbb{I}_{\mathrm{L}}^{0}$, problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ are quasi-completely equivalent: $\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in\left(\beta_{\mathrm{k}}, \beta_{\mathrm{k}-1}\right)\right\}=\widehat{\mathrm{C}}_{\mathrm{k}} \quad \beta_{k}=\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}+1} \quad \forall \mathrm{k}$

Notation

- \|. || : = | . $\|_{2}$.
- $\operatorname{supp}(u):=\left\{i \in \mathbb{I}_{N}: u[i] \neq 0\right\}$
- For any $\boldsymbol{\omega} \subset \mathbb{I}_{\mathbf{N}}^{0}$

$$
\begin{aligned}
A_{\omega} & :=\left(A_{\omega_{1}}, \ldots, A_{\omega_{\sharp \omega}}\right) \in \mathbb{R}^{\mathrm{M} \times \sharp \omega}, \quad A_{\omega}^{\top} \text { is the transposed of } A_{\omega} \\
u_{\omega} & :=\left(u_{\omega_{1}}, \ldots, u_{\omega \sharp \omega}\right)^{\top} \in \mathbb{R}^{\sharp \omega}
\end{aligned}
$$

Definition 2 Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $S \subseteq \mathbb{R}^{N}$. Consider the problem $\min \{f(u) \mid u \in S\}$.

- \widehat{u} is a strict minimizer if there is a neighborhood $\mathcal{O} \subset S, \widehat{u} \in \mathcal{O}$ so that $f(u)>f(\widehat{u}) \forall u \in \mathcal{O} \backslash\{\widehat{u}\}$.
- \widehat{u} is an isolated (local) minimizer if \widehat{u} is the only minimizer in an open subset $\mathcal{O}^{\prime} \subset \mathcal{O}$

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Preliminaries
- On the global minimizers of problem $\left(\mathcal{C}_{\mathrm{k}}\right)$
- Necessary and sufficient conditions

3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions
9. Common optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

Goal: Derive tests relating the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$.

2.1 Preliminaries

A constrained quadratic optimization problem: given $d \in \mathbb{R}^{M}$ and $\omega \subseteq \mathbb{I}_{N}$
$\left(\mathcal{P}_{\omega}\right) \quad \min _{u \in \mathbb{R}^{\mathbb{N}}}\|A u-d\|^{2} \quad$ subject to $\quad u[i]=0 \quad \forall i \in \mathbb{I}_{N}^{0} \backslash \omega$
The convex problem $\left(\mathcal{P}_{\omega}\right)$ always has solutions, for any $\omega \in \mathbb{I}_{N}^{0}$ and for any $d \in \mathbb{R}^{M}$.

Some useful facts on the relation of $\left(\mathcal{P}_{\omega}\right)$ to $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ [M. N. SIIMS 2013]
$\left(\mathcal{R}_{\beta}\right) \widehat{u}$ solves $\left(\mathcal{P}_{\omega}\right)$ for some $\omega \subset \mathbb{I}_{N}^{0} \Leftrightarrow \widehat{u}$ is a (local) minimizer of $\mathcal{F}_{\beta}, \forall \beta>0$ \widehat{u} solves $\left(\mathcal{P}_{\omega}\right)$ for $\omega \subset \mathbb{I}_{N}^{0}$ with $\operatorname{rank}\left(A_{\omega}\right)=\sharp \omega \Leftrightarrow \widehat{u}=$ strict (local) minimizer of $\mathcal{F}_{\beta}, \forall \beta$
$\left(\mathcal{C}_{\mathrm{k}}\right) \widehat{u}$ solves $\left(\mathcal{P}_{\omega}\right)$ for $\omega \subset \mathbb{I}_{\mathrm{N}}^{0}$ with $\sharp \omega=\mathrm{k} \Leftrightarrow \widehat{u}$ is a (local) minimizer of $\left(\mathcal{C}_{\mathrm{k}}\right)$

Remark 1 For any $\omega \subset \mathbb{I}_{N}$ with $\operatorname{rank}\left(A_{\omega}\right)=\sharp \omega$, the minimizer \widehat{u} of $\left(\mathcal{P}_{\omega}\right)$ is isolated.

2.2 On the optimal solution sets of problem $\left(\mathcal{C}_{\mathrm{k}}\right)$

Lemma $1 \quad \mathrm{c}_{0}=\|d\|^{2}$ and $\left\{\mathrm{c}_{\mathrm{k}}\right\}_{\mathrm{k} \geqslant 0}$ is decreasing with $\mathrm{c}_{\mathrm{k}}=0 \quad \forall \mathrm{k} \geqslant \mathrm{M}$.
Lemma 2 For $\mathrm{k} \in \mathbb{I}_{\mathrm{M}}$ let $\left(\mathcal{C}_{\mathrm{k}}\right)$ have a global minimizer \widehat{u} obeying

$$
\|\widehat{u}\|_{0}=\mathrm{k}-\mathrm{n} \quad \text { for } \mathrm{n} \geqslant 1
$$

Then $\quad A \widehat{u}=d . \quad$ Furthermore $\quad \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{m}}$ and $\mathrm{c}_{\mathrm{m}}=0 \quad \forall \mathrm{~m} \geqslant \mathrm{k}-\mathrm{n}$.

$$
\mathrm{L}:=\min \left\{\mathrm{k} \in \mathbb{I}_{\mathrm{M}} \mid \mathrm{c}_{\mathrm{k}}=0\right\}
$$

Example 1 One has $\mathrm{L} \leqslant \mathrm{M}-1$ if $d=A u$ for $\|u\|_{0} \leqslant \mathrm{M}-1$.
Theorem $2 \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{k}}$ for $\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} \Longrightarrow\left\{\begin{array}{l}\|\widehat{u}\|_{0}=\mathrm{k}=\operatorname{rank}\left(A_{\widehat{\sigma}}\right) \text { for } \widehat{\sigma}:=\operatorname{supp}(\widehat{u}) \\ \text { so } \widehat{u} \text { is a strict global minimizer of }\left(\mathcal{C}_{\mathrm{k}}\right) \text {. }\end{array}\right.$
$\mathrm{k} \geqslant \mathrm{L}+1 \quad \Longrightarrow \quad \widehat{\mathrm{C}}_{\mathrm{L}} \subset \widehat{\mathrm{C}}_{\mathrm{k}}$.

Corollary $1 \quad \widehat{\mathrm{C}}_{\mathrm{k}} \cap \widehat{\mathrm{C}}_{\mathrm{n}}=\varnothing \quad \forall(\mathrm{k}, \mathrm{n}) \in\left(\mathbb{I}_{\mathrm{L}}^{0}\right)^{2}$ such that $\mathrm{k} \neq \mathrm{n}$.

Example 2

$\begin{aligned} A & =\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right) \quad \text { and } d=\binom{1}{1} \\ \widehat{u} & \left.=(0,0,1)^{\top}=\widehat{\mathrm{C}}_{1} \text { (strict, } \operatorname{rank}\left(A_{3}\right)=\|\widehat{u}\|_{0}\right) \quad \Longrightarrow \quad \mathrm{c}_{1}=0 \quad \Longrightarrow \quad \mathrm{~L}=1 .\end{aligned}$ $\widehat{u}=(1,1,0)^{\top}$ is a strict global minimizer of $\left(\mathcal{C}_{2}\right)$ because $\operatorname{rank}\left(A_{\operatorname{supp}(\widehat{u})}\right)=2$ and $\mathrm{c}_{2}=0$.

- $A=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right) \quad$ and $\quad d=\binom{1}{0}$
$\widehat{\mathrm{C}}_{1}=\left\{(1,0,0,0)^{\top},(0,0,1,0)^{\top}\right\}$ (strict minimizers) $\quad \Longrightarrow \quad \mathrm{c}_{1}=0 \quad \Longrightarrow \mathrm{~L}=1$.
For $\mathrm{k} \geqslant 2$ all optimal solutions $\notin \widehat{\mathrm{C}}_{1}$ are nonstrict and have the form $\widehat{u}=(x, y, 1-x,-y)^{\top}$, $x \in \mathbb{R} \backslash\{0,1\}$. If $y=0$ then $\|\widehat{u}\|_{0}=2$ and otherwise $\|\widehat{u}\|_{0}=4$.

Remark 2 By Theorem 2 the optimal value c_{k} of problem $\left(\mathcal{C}_{\mathrm{k}}\right)$ for any $\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$ obeys

$$
\mathrm{c}_{\mathrm{k}}=\min \left\{\|A \widetilde{u}-d\|^{2} \text { where } \widetilde{u} \in \mathbb{R}^{N} \text { solves }\left(\mathcal{P}_{\omega}\right) \mid \omega \in \Omega_{\mathrm{k}}\right\}
$$

where $\quad \Omega_{\mathrm{k}}:=\left\{\omega \subset \mathbb{I}_{\mathrm{N}} \mid \sharp \omega=\mathrm{k}=\operatorname{rank}\left(A_{\omega}\right)\right\}$.

2.3. Necessary and sufficient conditions

Proposition $1 \widehat{u} \in \widehat{\mathrm{R}}_{\beta} \Longrightarrow\left\{\begin{array}{l}\widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{k}} \text { where } \mathrm{k}:=\|\widehat{u}\|_{0} \in \mathbb{I}_{\mathrm{L}}^{0} \\ \widehat{\mathrm{C}}_{\mathrm{k}} \subseteq \widehat{\mathrm{R}}_{\beta} \text { for } \mathrm{k}:=\|\widehat{u}\|_{0} \in \mathbb{I}_{\mathrm{L}}^{0}\end{array}\right.$
The global minimizers of \mathcal{F}_{β} are composed of some optimal sets $\widehat{\mathrm{C}}_{\mathrm{k}}$ for $\mathrm{k} \leqslant \mathrm{L}$.
$\widehat{\mathrm{C}}=$ the collection of all optimal solutions $\widehat{\mathrm{C}}_{\mathrm{k}}$ of problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ for all $\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$;
$\widehat{\mathrm{R}}=$ the set of all global minimizers $\widehat{\mathrm{R}}_{\beta}$ of \mathcal{F}_{β} for all $\beta>0$

$$
\widehat{\mathrm{C}}:=\bigcup_{\mathrm{k}=0}^{\mathrm{L}} \widehat{\mathrm{C}}_{\mathrm{k}} \quad \text { and } \quad \widehat{\mathrm{R}}:=\bigcup_{\beta>0} \widehat{\mathrm{R}}_{\beta} .
$$

Theorem $3 \quad \widehat{\mathrm{R}} \subset \widehat{\mathrm{C}}$.
When β ranges on $(0,+\infty), \mathcal{F}_{\beta}$ can have at most $\mathrm{L}+1$ different sets of global minimizers which are optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ for $\mathrm{k} \in\{0, \ldots, \mathrm{~L}\}$.

Theorem 4 For any $k \in \mathbb{I}_{\mathrm{L}}^{0}$ one has:

- $\widehat{\mathrm{C}}_{\mathrm{k}} \subseteq \widehat{\mathrm{R}}_{\beta} \quad$ if and only if $\quad \mathcal{F}_{\beta}(\bar{u})-\mathcal{F}_{\beta}(\widehat{u}) \geqslant 0 \quad \forall \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{k}} \quad \forall \bar{u} \in \widehat{\mathrm{C}}$
- $\widehat{\mathrm{C}}_{\mathrm{k}}=\widehat{\mathrm{R}}_{\beta} \quad$ if and only if $\quad \mathcal{F}_{\beta}(\bar{u})-\mathcal{F}_{\beta}(\widehat{u})>0 \quad \forall \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{k}} \quad \forall \bar{u} \in \widehat{\mathrm{C}} \backslash \widehat{\mathrm{C}}_{\mathrm{k}}$

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- The entire list of parameter values
- Conditions for agreement between their optimal sets
- The effective parameters values

4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions
9. Parameter values for equality between optimal sets

3.1. The entire list of parameter values

Definition 3 (Critical parameter values)

$$
\begin{aligned}
& \beta_{\mathrm{k}}:=\max \left\{\left.\frac{\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}+\mathrm{n}}}{\mathrm{n}} \right\rvert\, \mathrm{n} \in\{1, \ldots, \mathrm{~L}-\mathrm{k}\}\right\} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}-1}^{0} \quad \text { and } \quad \beta_{\mathrm{L}}=0 \\
& \beta_{\mathrm{k}}^{\mathrm{U}}:=\min \left\{\left.\frac{\mathrm{c}_{\mathrm{k}-\mathrm{n}}-\mathrm{c}_{\mathrm{k}}}{\mathrm{n}} \right\rvert\, \mathrm{n} \in\{1, \ldots, \mathrm{k}\}\right\} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}} \quad \text { and } \quad \beta_{0}^{\mathrm{U}} \equiv \beta_{-1}:=+\infty
\end{aligned}
$$

We have $\beta_{\mathrm{L}}=0<\beta_{\mathrm{L}}^{\mathrm{U}}$ and $\beta_{0}<\beta_{0}^{\mathrm{U}}$.
The cases where $\beta_{k}<\beta_{\mathrm{k}}^{\mathrm{U}}$ will be of particular interest.

Proposition $2 \exists \mathrm{~S}$ - finite union of vector subspaces of dimension $\leqslant \mathrm{M}-1$ such that

$$
d \in \mathbb{R}^{\mathrm{M}} \backslash \mathrm{~S} \quad \Longrightarrow \quad \beta_{\mathrm{k}} \neq \beta_{\mathrm{k}}^{\mathrm{U}} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} .
$$

$\beta_{\mathrm{k}} \neq \beta_{\mathrm{k}}^{\mathrm{U}} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$ is a generic property.
3.2. Conditions for agreement between the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

Theorem $5 \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$

- $\widehat{\mathrm{C}}_{\mathrm{k}} \subseteq \widehat{\mathrm{R}}_{\beta} \quad$ if and only if $\begin{cases}\beta_{0} \leqslant \beta<\beta_{0}^{\mathrm{U}} & \text { for } \mathrm{k}=0 ; \\ \beta_{\mathrm{k}} \leqslant \beta \leqslant \beta_{\mathrm{k}}^{\mathrm{U}} & \text { for } \mathrm{k} \in\{1, \ldots, \mathrm{~L}-1\} ; \\ \beta_{\mathrm{L}}<\beta \leqslant \beta_{\mathrm{L}}^{\mathrm{U}} & \text { for } \mathrm{k}=\mathrm{L} .\end{cases}$
- $\widehat{\mathrm{C}}_{\mathrm{k}}=\widehat{\mathrm{R}}_{\beta} \quad$ if and only if $\quad \beta_{\mathrm{k}}<\beta<\beta_{\mathrm{k}}^{\mathrm{U}}$.

Proof based on Theorem 4.

To exploit Theorem 5 we have to clarify the links between ($\beta_{\mathrm{k}}, \beta_{\mathrm{k}}^{\mathrm{U}}$) and c_{k}

3.3. The effective parameters values

The global minimizers of \mathcal{F}_{β} are always in $\widehat{\mathrm{C}}$ (Theorem 3), so we are interested in the indexes k for which there exist values of β such that $\widehat{\mathrm{C}}_{\mathrm{k}} \subset \widehat{\mathrm{R}}_{\beta}$. Their set is obtained from Theorem 5 .

Definition 4 The effective index set $\mathrm{J} \cup \mathrm{J}^{\mathrm{E}}$:

$$
\mathrm{J}:=\left\{\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} \mid \beta_{\mathrm{k}}<\beta_{\mathrm{k}}^{\mathrm{U}}\right\} \quad \text { and } \quad \mathrm{J}^{\mathrm{E}}:=\left\{\mathrm{m} \in \mathbb{I}_{\mathrm{L}}^{0} \mid \beta_{\mathrm{m}}=\beta_{\mathrm{m}}^{\mathrm{U}}\right\}
$$

Ordering: $\mathrm{J}=\left\{\mathrm{J}_{0}, \mathrm{~J}_{1}, \ldots, \mathrm{~J}_{\mathrm{p}}\right\}$ where $\mathrm{p}:=\sharp \mathrm{J}-1$ and $\mathrm{J}_{\mathrm{k}-1}<\mathrm{J}_{\mathrm{k}} \forall \mathrm{k}$. Further: $\left(\mathrm{J}_{0}=0, \mathrm{~J}_{\mathrm{p}}=\mathrm{L}\right) \in \mathrm{J}^{2} \quad$ with $\quad \beta_{\mathrm{J}_{-1}}:=\beta_{\mathrm{J}_{0}}^{\mathrm{U}} \equiv \beta_{0}^{\mathrm{U}}=+\infty \quad$ and $\quad \beta_{\mathrm{J}_{\mathrm{p}}} \equiv \beta_{\mathrm{L}}=0$.

The set J is always nonempty.
Lemma $3 \quad \widehat{\mathrm{R}} \cap \widehat{\mathrm{C}}_{\mathrm{k}}=\varnothing \quad$ if and only if $\mathrm{k} \in \mathbb{T}_{\mathrm{L}}^{0} \backslash\left\{\mathrm{~J} \cup \mathrm{~J}^{\mathrm{E}}\right\}$.

Definition 3 for reminder:

$$
\begin{aligned}
& \beta_{\mathrm{k}}:=\max \left\{\left.\frac{\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}+\mathrm{n}}}{\mathrm{n}} \right\rvert\, \mathrm{n} \in\{1, \ldots, \mathrm{~L}-\mathrm{k}\}\right\} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}-1}^{0} \quad \text { and } \quad \beta_{\mathrm{L}}:=0, \\
& \beta_{\mathrm{k}}^{\mathrm{U}}:=\min \left\{\left.\frac{\mathrm{c}_{\mathrm{k}-\mathrm{n}}-\mathrm{c}_{\mathrm{k}}}{\mathrm{n}} \right\rvert\, \mathrm{n} \in\{1, \ldots, \mathrm{k}\}\right\} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}} \quad \text { and } \quad \beta_{0}^{\mathrm{U}}:=+\infty .
\end{aligned}
$$

Simplification of $\left\{\beta_{\mathrm{k}}, \beta_{\mathrm{k}}^{\mathrm{U}}\right\}_{\mathrm{k} \in \mathrm{J} \cup \mathrm{J}^{\mathrm{E}}}$

Proposition 3 Let $\left\{\beta_{\mathrm{k}}, \beta_{\mathrm{k}}^{\mathrm{U}}\right\}$ and J be as in Definition 3 and Definition 4, resp. Then
(a) $\beta_{\mathrm{J}_{\mathrm{k}}}<\beta_{\mathrm{J}_{\mathrm{k}}}^{\mathrm{U}}=\beta_{\mathrm{J}_{\mathrm{k}-1}} \quad \forall \mathrm{~J}_{\mathrm{k}} \in \mathrm{J} \backslash\left\{\mathrm{J}_{0}\right\} \quad$ and $\quad \beta_{\mathrm{J}_{0}^{\mathrm{U}}} \equiv \beta_{\mathrm{J}_{-1}}=+\infty$.
(b) $\quad \beta_{\mathrm{J}_{\mathrm{k}}}=\frac{\mathrm{c}_{\mathrm{J}_{\mathrm{k}}}-\mathrm{c}_{\mathrm{J}_{\mathrm{k}+1}}}{\mathrm{~J}_{\mathrm{k}+1}-\mathrm{J}_{\mathrm{k}}} \quad \forall \mathrm{J}_{\mathrm{k}} \in \mathrm{J} \backslash\left\{\mathrm{J}_{\mathrm{p}}\right\} \quad$ and $\quad \beta_{\mathrm{J}_{\mathrm{p}}} \equiv \beta_{\mathrm{L}}=0$.
(c) $\quad\left\{\beta_{\mathrm{m}} \mid \mathrm{m} \in \mathrm{J}^{\mathrm{E}}\right\} \subset\left\{\beta_{\mathrm{J}_{\mathrm{k}}} \mid \mathrm{J}_{\mathrm{k}} \in \mathrm{J} \backslash\left\{\mathrm{J}_{\mathrm{p}}\right\}\right\}$.
$\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}$ is strictly decreasing and its first entry is β_{0}.

Example 3 Let $\left\{c_{k}\right\}_{k=0}^{L}$ for $L=7$ reads as

$$
\mathrm{c}_{0}=48 \quad \mathrm{c}_{1}=40 \quad \mathrm{c}_{2}=30 \quad \mathrm{c}_{3}=22 \quad \mathrm{c}_{4}=14 \quad \mathrm{c}_{5}=10 \quad \mathrm{c}_{6}=4 \quad \mathrm{c}_{7}=0 .
$$

By Definition 3 the sequences $\left\{\beta_{\mathrm{k}}, \beta_{\mathrm{k}}^{\mathrm{U}}\right\}_{\mathrm{k}=0}^{7}$ are given by

$$
\begin{array}{cccccccc}
\boldsymbol{\beta}_{0}=\mathbf{9} & \beta_{1}=10 & \boldsymbol{\beta}_{\mathbf{2}}=\mathbf{8} & \beta_{3}=8 & \boldsymbol{\beta}_{4}=\mathbf{5} & \beta_{5}=6 & \boldsymbol{\beta}_{6}=\mathbf{4} & \boldsymbol{\beta}_{7}=\mathbf{0} \\
\beta_{0}^{\mathrm{U}}=+\infty & \beta_{1}^{\mathrm{U}}=8 & \beta_{2}^{\mathrm{U}}=\mathbf{9} & \beta_{3}^{\mathrm{U}}=8 & \beta_{4}^{\mathrm{U}}=\mathbf{8} & \beta_{5}^{\mathrm{U}}=4 & \beta_{6}^{\mathrm{U}}=\mathbf{5} & \beta_{7}^{\mathrm{U}}=\mathbf{4}
\end{array}
$$

From Definition 4, $\mathrm{J}=\left\{\mathrm{J}_{0}=\mathbf{0}, \mathrm{J}_{1}=\mathbf{2}, \mathrm{J}_{2}=\mathbf{4}, \mathrm{J}_{3}=\mathbf{6}, \mathrm{J}_{4}=\mathbf{7}\right\}$ and $\mathrm{J}^{\mathrm{E}}=\{\mathbf{3}\}$.

- One has $\beta_{\mathrm{J}_{\mathrm{k}}}=\beta_{\mathrm{J}_{\mathrm{k}+1}}^{\mathrm{U}}$ for any $\mathrm{J}_{\mathrm{k}} \in \mathrm{J}$ (Proposition 3(a)).
- The formula in Proposition 3(b) holds.
$-\left\{\beta_{3} \mid 3 \in \mathrm{~J}^{\mathrm{E}}\right\} \Rightarrow \beta_{3}=\beta_{\mathrm{J}_{1}}=8 \Rightarrow\left\{\beta_{3} \mid 3 \in \mathrm{~J}^{\mathrm{E}}\right\} \subset\left\{\beta_{\mathrm{J}_{\mathrm{k}}} \mid \mathrm{J}_{\mathrm{k}} \in \mathrm{J} \backslash\left\{\mathrm{J}_{4}\right\}\right\}$ (Proposition 3(c)).
$-\mathrm{J}_{\beta_{J_{1}}}^{\mathrm{E}}:=\left\{\mathrm{m} \in \mathrm{J}^{\mathrm{E}} \mid \beta_{\mathrm{m}}=\beta_{\mathrm{J}_{1}}\right\}=\left\{3 \in \mathrm{~J}^{\mathrm{E}} \mid \mathrm{J}_{1}<3<\mathrm{J}_{2}\right\}$, see Lemma 4.
- J has the smallest indexes so that $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}=\{9,8,5,4,0\}$ is the longest strictly decreasing subsequence of $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{7}$ containing β_{0} - see Proposition 4. One has $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}=\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}^{\prime}}$ for $\mathrm{J}^{\prime}:=\{0,3,4,6,7\} ;$ however, $\mathrm{J}_{2}^{\prime}>\mathrm{J}_{2}$.

The location of $\left\{\beta_{\mathrm{m}} \mid \mathrm{m} \in \mathrm{J}^{\mathrm{E}}\right\}$ is given by the (probably empty) subsets

$$
\mathrm{J}_{\beta_{\mathrm{J}_{\mathrm{k}}}^{\mathrm{B}}}:=\left\{\mathrm{m} \in \mathrm{~J}^{\mathrm{E}} \mid \beta_{\mathrm{m}}=\beta_{\mathrm{J}_{\mathrm{k}}}\right\} .
$$

Lemma 4 The sets $\mathrm{J}_{\mathrm{J}_{\mathrm{k}}}^{\mathrm{E}}$ fulfill $\mathrm{J}_{\mathrm{B}_{\mathrm{k}}}^{\mathrm{E}}=\varnothing$ for $\mathrm{k}=\mathrm{p}$ and for any $\mathrm{k} \leqslant \mathrm{p}-1$

$$
\mathrm{J}_{\boldsymbol{J}_{\mathrm{k}}}^{\mathrm{E}}=\left\{\mathrm{m} \in \mathrm{~J}^{\mathrm{E}} \mid \mathrm{J}_{\mathrm{k}}<\mathrm{m}<\mathrm{J}_{\mathrm{k}+1}\right\} .
$$

J and $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}$ are characterized next
Proposition 4 Let $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ read as in Definition 3 and J as in Definition 4. Then $0 \in \mathrm{~J}$ and J contains the smallest indexes such that $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}$ is the longest strictly decreasing subsequence of $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ containing β_{0}.

In order to find the effective J and $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}$ we need only $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ in Definition 3.

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions
9. Equivalence relations between the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

4.1. Partial equivalence

Theorem 6 Let $\left\{\beta_{\mathrm{k}}\right\}$ be as in Definition 3 and J as in Definition 4. Then:

$$
\begin{aligned}
& \left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in\left(\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right)\right\}=\widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}}} \quad \forall \mathrm{~J}_{\mathrm{k}} \in \mathrm{~J} \\
& \left(\bigcup_{\mathrm{n}=1}^{\mathrm{p}}\left[\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right]\right) \cup\left[\beta_{\mathrm{J}_{0}}, \beta_{\mathrm{J}_{-1}}\right)=[0,+\infty)
\end{aligned}
$$

$\left\{\beta_{\mathrm{J}_{0}}, \ldots, \beta_{\mathrm{J}_{\mathrm{p}-1}}\right\}$ in Definition 4 partition $(0,+\infty)$ into $\sharp \mathrm{J}$ proper intervals. For any
$\beta \in\left(\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right)$ the optimal sets of $\left(\mathcal{R}_{\beta}\right)$ and of $\left(\mathcal{C}_{\mathrm{n}}\right)$ for $\mathrm{n}=\mathrm{J}_{\mathrm{k}}$ coincide.
If $\mathbb{I}_{\mathrm{L}}^{0} \backslash \mathrm{~J} \neq \varnothing$, the optimal sets $\left(\mathcal{C}_{\mathrm{k}}\right)$ for $\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} \backslash \mathrm{~J}$ cannot be optimal solutions of $\left(\mathcal{R}_{\beta}\right) \forall \beta>0$.
\Longrightarrow partial equivalence.
$\left\{\beta_{\mathrm{J}_{\mathrm{k}}}\right\}$ is a finite set of isolated values hence $\beta \neq \beta_{\mathrm{J}_{\mathrm{k}}}$ generically.

The optimal sets of problem $\left(\mathcal{R}_{\beta}\right)$ for $\beta_{\mathrm{k}}, \mathrm{k} \in \mathrm{J}$:
Theorem 7 Let H1 hold. Let $\left\{\beta_{\mathrm{k}}\right\}$ be as in Definition 3 and J as in Definition 4. Then

$$
\widehat{\mathrm{R}}_{\beta_{\mathrm{J}_{\mathrm{k}}}}=\widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}}} \cup \widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}+1}} \cup\left(\bigcup_{\mathrm{m} \in \mathrm{~J}_{\beta_{\mathrm{J}}}^{\mathrm{E}}} \widehat{\mathrm{C}}_{\mathrm{m}}\right) \quad \forall \mathrm{J}_{\mathrm{k}} \in \mathrm{~J} \backslash\left\{\mathrm{~J}_{\mathrm{p}}\right\},
$$

where $\mathrm{J}_{\mathrm{J}_{\mathrm{k}}}^{\mathrm{E}}=\left\{\mathrm{m} \in \mathrm{J}^{\mathrm{E}} \mid \mathrm{J}_{\mathrm{k}}<\mathrm{m}<\mathrm{J}_{\mathrm{k}+1}\right\}$ and $\widehat{\mathrm{C}}_{\mathrm{k}} \cap \widehat{\mathrm{C}}_{\mathrm{n}}=\varnothing \forall(\mathrm{k}, \mathrm{n}) \in\left(\mathrm{J} \cup \mathrm{J}^{\mathrm{E}}\right)^{2}, \mathrm{k} \neq \mathrm{n}$.

Example 4 [Ex.3, cont.] We had $\mathrm{J}=\{0,2,4,6,7\},\left(\beta_{\mathrm{J}_{0}}=9, \beta_{\mathrm{J}_{1}}=8, \beta_{\mathrm{J}_{2}}=5, \beta_{\mathrm{J}_{3}}=4, \beta_{\mathrm{J}_{4}}=0\right)$, and $\mathrm{J}_{2}^{\mathrm{E}}=\{3\}$ with $\beta_{\mathrm{J}_{2}^{\mathrm{E}}}=8$ and $\mathrm{J}_{\mathrm{k}}^{\mathrm{E}}=\varnothing$ otherwise. By Theorems 6 and 7
$\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta>9\right\}=\widehat{\mathrm{C}}_{0} \quad\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in(8,9)\right\}=\widehat{\mathrm{C}}_{2} \quad\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in(5,8)\right\}=\widehat{\mathrm{C}}_{4}\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in(4,5)\right\}=\widehat{\mathrm{C}}_{6} \quad\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in(0,4)\right\}=\widehat{\mathrm{C}}_{7}$ and $\quad \widehat{\mathrm{R}}_{\beta=9}=\widehat{\mathrm{C}}_{0} \cup \widehat{\mathrm{C}}_{2} \quad \widehat{\mathrm{R}}_{\beta=8}=\widehat{\mathrm{C}}_{2} \cup \widehat{\mathrm{C}}_{3} \cup \widehat{\mathrm{C}}_{4} \quad \widehat{\mathrm{R}}_{\beta=5}=\widehat{\mathrm{C}}_{4} \cup \widehat{\mathrm{C}}_{6} \quad \widehat{\mathrm{R}}_{\beta=4}=\widehat{\mathrm{C}}_{6} \cup \widehat{\mathrm{C}}_{7}$.

A partial equivalence between problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ always exists.
For the $\sharp \mathrm{J}-1$ isolated values $\left\{\beta_{\mathrm{k}} \mid \mathrm{k} \in \mathrm{J} \backslash\{\mathrm{L}\}\right\}$ problem $\left(\mathcal{R}_{\beta}\right)$ has normally two optimal sets (Proposition 2).

4.2. Quasi-complete equivalence

Lemma 5 Let J be as in Definition 4. Then the following hold:
(a) If the sequence $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ in Definition 3 is strictly decreasing, then its entries read as

$$
\begin{equation*}
\beta_{k}=\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}+1} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}-1}^{0} \quad \text { and } \quad \beta_{\mathrm{L}}=0, \quad \beta_{-1}:=\beta_{0}^{\mathrm{U}}=+\infty \tag{1}
\end{equation*}
$$

(b) If the sequence $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ in (1) is strictly decreasing then $\mathrm{J}=\mathbb{I}_{\mathrm{L}}^{0}$.

Theorem 8 Let $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ in (1) be strictly decreasing. Then

$$
\begin{gathered}
\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta \in\left(\beta_{\mathrm{k}}, \beta_{\mathrm{k}-1}\right)\right\}=\widehat{\mathrm{C}}_{\mathrm{k}} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} \\
\widehat{\mathrm{R}}_{\beta_{\mathrm{k}}}=\widehat{\mathrm{C}}_{\mathrm{k}} \cup \widehat{\mathrm{C}}_{\mathrm{k}+1} \quad \text { with } \quad \widehat{\mathrm{C}}_{\mathrm{k}} \cap \widehat{\mathrm{C}}_{\mathrm{k}+1}=\varnothing \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}-1}^{0} .
\end{gathered}
$$

$\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ in (1) strictly decreasing means that $\mathrm{c}_{\mathrm{k}-1}-\mathrm{c}_{\mathrm{k}}>\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}+1}, \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}-1}$.
Let \bar{u}, \widehat{u} and \widetilde{u} be optimal solutions of problems $\left(\mathcal{C}_{\mathrm{k}-1}\right),\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{C}_{\mathrm{k}+1}\right)$, resp.
Denote $\bar{\sigma}:=\operatorname{supp}(\bar{u}), \widehat{u}:=\operatorname{supp}(\widehat{u})$ and $\widetilde{\sigma}:=\operatorname{supp}(\widetilde{u})$.
The condition on c_{k} 's reds as $d^{\top}\left(\operatorname{Proj}\left(A_{\widetilde{\sigma}}\right)-\operatorname{Proj}\left(A_{\bar{\sigma}}\right)\right) d>d^{\top}\left(\operatorname{Proj}\left(A_{\widetilde{\sigma}}\right)-\operatorname{Proj}\left(A_{\widetilde{\sigma}}\right)\right) d>0$.

Mid-way scenarios...

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions
9. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

$$
\begin{gathered}
\Omega_{\mathrm{k}}:=\left\{\omega \subset \mathbb{I}_{\mathrm{N}} \mid \sharp \omega=\mathrm{k}=\operatorname{rank}\left(A_{\omega}\right)\right\} . \\
\mathrm{E}_{\mathrm{k}}:=\bigcup_{\omega \in \Omega_{\mathrm{k}}} \operatorname{range}\left(A_{\omega}\right)^{\perp} \quad \text { and } \quad \mathrm{G}_{\mathrm{k}}:=\bigcup_{\omega \in \Omega_{\mathrm{k}}} \operatorname{range}\left(A_{\omega}\right) .
\end{gathered}
$$

$\mathrm{E}_{0}=\mathrm{G}_{\mathrm{M}}=\mathbb{R}^{\mathrm{M}}$ and $\mathrm{E}_{\mathrm{M}}=\mathrm{G}_{0}=\{0\}$ by H 1.

Proposition 5 Let $\mathrm{L}^{\prime} \leqslant \mathrm{M}$ be arbitrarily fixed.

- $\mathrm{c}_{\mathrm{k}}>0 \quad \forall \mathrm{k} \leqslant \mathrm{L}^{\prime}-1 \quad \Longleftrightarrow \quad d \in \mathbb{R}^{\mathrm{M}} \backslash \mathrm{G}_{\mathrm{L}^{\prime}-1}$;
- $d \in \mathbb{R}^{\mathrm{M}} \backslash\left(\mathrm{E}_{2} \cup \mathrm{G}_{\mathrm{L}^{\prime}-1}\right) \quad \Longrightarrow \quad \mathrm{c}_{\mathrm{k}-1}>\mathrm{c}_{\mathrm{k}} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{L}^{\prime}}$.
E_{2} and G_{M-1} are finite unions of vector subspaces of dimensions $M-2$ and $M-1$, respectively. Hence, $d \in \mathbb{R}^{\mathrm{M}} \backslash\left(\mathrm{E}_{2} \cup \mathrm{G}_{\mathrm{M}-1}\right)$ is a generic property.
$\Longrightarrow \quad\left\{c_{k}\right\}_{k=0}^{M}$ is strictly decreasing and $L=M$ generically.

Proposition $6 \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0} \Longrightarrow \mathcal{F}_{\beta}(\widehat{u})=\mathrm{c}_{\mathrm{k}}+\beta \mathrm{k} \quad \forall \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{k}}$.
By Theorem $3 \widehat{\mathrm{R}}_{\beta} \subset \widehat{\mathrm{C}}=\bigcup_{\mathrm{k}=0}^{\mathrm{L}} \widehat{\mathrm{C}}_{\mathrm{k}} \Longrightarrow \quad$ the optimal value of problem $\left(\mathcal{R}_{\beta}\right)$ reads as

$$
r_{\beta}=\min \left\{\mathrm{c}_{\mathrm{k}}+\beta \mathrm{k} \mid \mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}\right\} .
$$

Corollary 2 The application $\beta \mapsto r_{\beta}:(0,+\infty) \rightarrow \mathbb{R}$ fulfills

- $\left\{\begin{aligned} r_{\beta} & =c_{\mathrm{J}_{\mathrm{k}}}+\beta \mathrm{J}_{\mathrm{k}} \\ & =\mathcal{F}_{\beta}(\widehat{u}) \forall \widehat{u} \in \widehat{\mathrm{C}}_{\mathrm{J}_{\mathrm{k}}}\end{aligned} \quad\right.$ if and only if $\beta \in\left\{\begin{array}{lll}{\left[\beta_{\mathrm{J}_{0}},+\infty\right)} & \text { for } & \mathrm{J}_{0} \equiv 0 \\ {\left[\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right]} & \text { for } & \mathrm{J}_{\mathrm{k}} \in \mathrm{J} \backslash\{0, \mathrm{~L}\} \\ \left(0, \beta_{\mathrm{J}_{\mathrm{p}-1}}\right] & \text { for } & \mathrm{J}_{\mathrm{p}} \equiv \mathrm{L}\end{array}\right.$
- $\beta \mapsto r_{\beta}$ is continuous and concave.
- $r_{\beta_{\mathrm{J}_{\mathrm{k}-1}}}>r_{\beta_{\mathrm{J}_{\mathrm{k}}}} \forall \mathrm{J}_{\mathrm{k}} \in \mathrm{J}, \quad r_{\beta_{\mathrm{J}_{0}}}=\mathrm{c}_{\mathrm{J}_{0}}=r_{\beta} \forall \beta \geqslant \beta_{\mathrm{J}_{0}} \quad$ and $\quad r_{\beta_{\mathrm{J}_{0}}}>r_{\beta} \forall \beta<\beta_{\mathrm{J}_{0}}$.
$\beta \mapsto r_{\beta}$ is affine increasing on each interval $\left(\beta_{\mathrm{J}_{\mathrm{k}}}, \beta_{\mathrm{J}_{\mathrm{k}-1}}\right)$ with upward kinks at $\beta_{\mathrm{J}_{\mathrm{k}}}$ for any $\mathrm{J}_{\mathrm{k}} \in \mathrm{J} \backslash\{\mathrm{L}\}$ and bounded by c_{0}.

Example 5 [Cont. of Example 3] From Corollary 2, $\beta \mapsto r_{\beta}$ is given by

$$
\begin{array}{lll}
\beta \in(0,4] & r_{\beta}=c_{7}+7 \beta=7 \beta & r_{\beta=4}=28 \\
\beta \in[4,5] & r_{\beta}=c_{6}+6 \beta=4+6 \beta & r_{\beta=5}=34 \\
\beta \in[5,8] & r_{\beta}=c_{4}+4 \beta=14+4 \beta & r_{\beta=8}=46 \\
\beta \in[8,9] & r_{\beta}=c_{2}+2 \beta=30+2 \beta & r_{\beta=9}=48 \\
\beta \in[9,+\infty) & r_{\beta}=c_{0}+0 \beta=48 &
\end{array}
$$

affine expressions

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions

6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

For any $\beta>0$ and $\mathrm{k} \in \mathbb{I}_{\mathrm{L}}^{0}$ the optimal sets of problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ are composed out of a certain finite number of isolated (hence strict) minimizers.

6.1. Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

$\mathrm{k} \leqslant \min \{\mathrm{L}, \mathrm{M}-1\}$ and $(\widehat{u}, \widetilde{u}) \in\left(\widehat{\mathrm{C}}_{\mathrm{k}}\right)^{2}, \widehat{u} \neq \widetilde{u}$. Then $\widehat{\sigma}:=\operatorname{supp}(\widehat{u}), \widetilde{\sigma}:=\operatorname{supp}(\widetilde{u})$ are in $\left(\Omega_{\mathrm{k}}\right)^{2}$.

$$
\mathrm{c}_{\mathrm{k}}=\left\|A_{\widehat{\sigma}} \widehat{u}_{\widehat{\sigma}}-d\right\|^{2}=\left\|A_{\widetilde{\sigma}} \widetilde{u}_{\widetilde{\sigma}}-d\right\|^{2} \quad \text { where } \quad \widehat{\sigma} \neq \widetilde{\sigma} .
$$

Π_{ω} the orthogonal projector onto range $\left(A_{\omega}\right)$

$$
\left\|A_{\widetilde{\sigma}} \widehat{u}_{\widehat{\sigma}}-d\right\|^{2}-\left\|A_{\widetilde{\sigma}} \widetilde{u}_{\widetilde{\sigma}}-d\right\|^{2}=d^{\top}\left(\Pi_{\tilde{\sigma}}-\Pi_{\widetilde{\sigma}}\right) d=0 .
$$

\mathbf{H}^{\star} For $\mathrm{K} \leqslant \min \{\mathrm{M}-1, \mathrm{~L}\}$ fixed, $A \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}}$ obeys $\quad \Pi_{\omega} \neq \Pi_{\bar{\omega}} \quad \forall(\omega, \bar{\omega}) \in \Omega_{\mathrm{k}}^{2} \quad \omega \neq \bar{\omega} \quad \forall \mathrm{k} \in \mathbb{I}_{\mathrm{k}}$. H^{\star} is a generic property of all matrices in $\mathbb{R}^{M \times N}$ [M. N., SIIMS 2013].

$$
\Delta_{\mathrm{K}}:=\bigcup_{\mathrm{k}=1}^{\mathrm{K}} \bigcup_{(\omega, \bar{\omega}) \in\left(\Omega_{\mathrm{k}}\right)^{2}}\left\{g \in \mathbb{R}^{\mathrm{M}} \mid \omega \neq \bar{\omega} \text { and } g \in \operatorname{ker}\left(\Pi_{\bar{\omega}}-\Pi_{\omega}\right)\right\}
$$

$\operatorname{dim}\left(\Delta_{K}\right) \leqslant M-1$, hence $d \in \mathbb{R}^{M} \backslash \Delta_{K}$ generically.
$\mathrm{H}^{\star} \quad$ and $\quad d \in \mathbb{R}^{\mathrm{M}} \backslash \Delta_{\mathrm{K}} \quad \Longrightarrow \quad\left(\mathcal{C}_{\mathrm{k}}\right)$ for $\mathrm{k} \in \mathbb{I}_{\mathrm{K}}$ has a unique optimal solution.
$\mathrm{K}^{\prime}:=\max \{\mathrm{k} \in \mathrm{J} \mid \mathrm{k} \leqslant \mathrm{K}\} \Rightarrow\left(\mathcal{R}_{\beta}\right)$ has a unique global minimizer $\forall \beta \in\left(\beta_{\mathrm{K}^{\prime}},+\infty\right) \backslash\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathrm{J}}$

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests

- Monte Carlo on $\left\{\beta_{\mathrm{k}}\right\}$ with 10^{5} tests for $(\mathrm{M}, \mathrm{N})=(5,10)$
- Tests on (partial) equivalence with selected matrix data

8. Conclusions and future directions

7. Numerical tests

Two kind of experiments using matrices $A \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}}$ for $(\mathrm{M}, \mathrm{N})=(5,10)$, original vectors $u^{\circ} \in \mathbb{R}^{\mathrm{N}}$ and data samples $d=A u^{\circ}$ (+noise) with two different goals:

- to roughly see the behaviour of the parameters β_{k} in Definition 3 ;
- to verify and illustrate our theoretical findings.

All results were calculated using an exhaustive combinatorial search.
7.1. Monte Carlo experiments on $\left\{\beta_{\mathrm{k}}\right\}$ with 10^{5} tests for $(\mathrm{M}, \mathrm{N})=(5,10)$

Two experiments, each one composed of $\mathbf{1 0}^{\mathbf{5}}$ trials with $A \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}}$ for $(\mathrm{M}, \mathrm{N})=(5,10)$
In each trial:

- an "original" $u^{\circ} \in \mathbb{R}^{\mathrm{N}}$, random support on $\{1, \ldots, \mathrm{~N}\}$ with $\left\|u^{\circ}\right\|_{0} \leqslant \mathrm{M}-1=4$.
- the coefficients of A and $u_{\operatorname{supp}\left(u^{\circ}\right)}^{\mathrm{o}}$ - i.i.d.
- $d=A u^{\circ}+$ i.i.d. centered Gaussian noise.
- compute the optimal values $\left\{\mathrm{c}_{\mathrm{k}}\right\}$ and then compute ($\beta_{\mathrm{k}}, \beta_{\mathrm{k}}^{\mathrm{U}}$) by Definition 3.

Two different distributions for A and $u_{\operatorname{supp}\left(u^{\circ}\right)}^{\circ}$
\diamond Experiment $\mathcal{N}(\mathbf{0}, \mathbf{1 0}) . A(i, j)$ and $u_{\text {supp }\left(u^{\circ}\right)}^{\mathrm{o}} \sim \mathcal{N}(0,10)$. Support length $\# \operatorname{supp}\left(u^{\circ}\right) \in\{1, \ldots, 4\}$, mean $=3.8$. SNR of d in $[10.1,61.1]$, mean $=33.75 \mathrm{~dB}$.
\diamond Experiment Uni $[\mathbf{0}, \mathbf{1 0}] . A(i, j)$ and $u_{\operatorname{supp}\left(u^{\circ}\right)}^{\mathrm{o}} \sim$ uniform on $[0,10]$. $\sharp \operatorname{supp}\left(u^{\circ}\right) \in\{1, \ldots, 4\}$, mean $=3.8$. SNR of d in $[20,55]$, mean $=28.95 \mathrm{~dB}$.

$$
N_{\mathrm{k}}:=\sharp\left\{\mathrm{k} \in \mathbb{I}_{\mathrm{M}}^{0} \mid \beta_{\mathrm{k}}>\beta_{\mathrm{k}-1}\right\} .
$$

Table 1: Results on the behaviour of $\left\{\beta_{\mathrm{k}}\right\}$ in Definition 3 for two experiments, each one composed of 10^{5} random trials. For $\mathrm{k} \geqslant 3$ we have found $N_{\mathrm{k}}=0$.

	$\beta_{\mathrm{k}}<\beta_{\mathrm{k}-1}, \forall \mathrm{k} \in \mathbb{I}_{\mathrm{M}}^{0}$	$N_{\mathrm{k}}=1$	$N_{\mathrm{k}}=2$	$\operatorname{mean}(\mathrm{SNR})$	$\operatorname{mean}\left(\left\\|u^{\circ}\right\\|_{0}\right)$
$\mathcal{N}(0,10)$	$\mathbf{9 3 . 6 8 1} \%$	6.254%	0.065%	33.75	3.7922
Uni $[0,10]$	$\mathbf{9 8 . 7 8 3} \%$	1.216%	0.001%	28.95	3.7936

Observations:

- $L=M$ in each trial (Remainder: $L:=\min \left\{k \in \mathbb{I}_{N} \mid c_{k}=0\right\}$);
- $\left\{\mathrm{c}_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{M}$ was always strictly decreasing (see Proposition 5);
- $\beta_{\mathrm{k}} \neq \beta_{\mathrm{k}}^{\mathrm{U}}$ in each trial (see Proposition 3), so $\mathrm{J}^{\mathrm{E}}=\varnothing$;
- For every A there were d so that $\left\{\beta_{\mathrm{k}}:=\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}-1}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ was strictly decreasing
6.2. Tests on quasi-equivalence with a selected matrix and selected data

$$
\begin{aligned}
A & =\left(\begin{array}{rrrrrrrrrr}
13.94 & 16.36 & 4.88 & -3.09 & -15.42 & 1.31 & -3.18 & -12.13 & -4.26 & -10.09 \\
7.06 & -6.48 & -9.07 & -8.37 & -2.72 & -17.42 & -5.83 & -3.81 & 3.87 & -1.80 \\
11.63 & 6.73 & -4.75 & -6.28 & 3.42 & 6.68 & -1.64 & 13.23 & 9.03 & -20.27 \\
-7.54 & 12.74 & -6.66 & 5.01 & 4.84 & 8.98 & -9.35 & 3.85 & 7.18 & 4.09 \\
3.22 & -10.40 & -5.02 & 16.70 & 9.53 & -5.49 & 11.88 & -3.62 & 17.36 & 7.34
\end{array}\right) \\
u^{0} & =\left(\begin{array}{rrrrrrrrrr}
0 & \mathbf{4} & 0 & 0 & 0 & \mathbf{9} & 0 & 0 & \mathbf{3} & 0
\end{array}\right)^{\top} .
\end{aligned}
$$

$A(i, j)$ nearly normal distribution with variance 10 and $\operatorname{rank}(A)=\mathrm{M}=5$
Problem (\mathcal{C}_{M}) has $\sharp \Omega_{\mathrm{M}}=252$ optimal solutions; none of them is shown.
Since $\beta_{0}<\beta_{0}^{\mathrm{U}}=+\infty$, in all cases $\widehat{\mathrm{C}}_{0}=\left\{\widehat{\mathrm{R}}_{\beta} \mid \beta>\beta_{0}\right\}$ by Theorem 5.
We selected a couple $\left(A, u^{\circ}\right)$ so that β_{k} are seldom strictly decreasing compared to Tab. 1 .

Table 2: 10^{5} trials where $d=A u^{0}+$ i.i.d. centered Gaussian noise.

	$\beta_{\mathrm{k}}<\beta_{\mathrm{k}-1}, \forall \mathrm{k} \in \mathbb{I}_{\mathrm{M}}^{0}$	$N_{\mathrm{k}}=1$	$N_{\mathrm{k}}=2$	$\operatorname{mean}(\mathrm{SNR})$	$\operatorname{mean}\left(\left\\|u^{\mathrm{o}}\right\\|_{0}\right)$
u° in (2)	29.41%	70.59%	0%	36.25	3

Noise-free data

$$
d=A u^{\circ}=\left(\begin{array}{lllll}
64.45 & -171.09 & 114.13 & 153.32 & -38.93
\end{array}\right)^{\top}
$$

$\widehat{u}=u^{\circ}$ is an optimal solution to problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ with $\mathrm{c}_{\mathrm{k}}=0$ for $\mathrm{k} \in\{3,4,5\}$ and $\mathrm{L}=3$.

$$
\boldsymbol{\beta}_{\mathbf{3}}=0<\beta_{3}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{1}}=3872.46<\beta_{1}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{0}}=63729 \quad \text { and } \quad \beta_{2}=3968>\beta_{2}^{\mathrm{U}}=3776.82 .
$$

$\mathrm{J}=\{0,1,3\}$

k	c_{k}	$\widehat{\mathrm{C}}_{\mathrm{k}}=$ the optimal solution of $\left(\mathcal{C}_{\mathrm{k}}\right)$, singleton							$\widehat{\mathrm{C}}_{\mathrm{k}}=\widehat{\mathrm{R}}_{\beta}$			
3	0	0	$\mathbf{4}$	0	0	0	$\mathbf{9}$	0	0	$\mathbf{3}$	0	$\beta \in\left(\beta_{3}, \beta_{1}\right)$
2	3968	0	$\mathbf{3 . 2 5}$	0	0	0	$\mathbf{9 . 2 9}$	0	0	0	0	$\mathbf{n o}$
1	7745	0	0	0	0	0	$\mathbf{1 1 . 7 6}$	0	0	0	0	$\beta \in\left(\beta_{1}, \beta_{0}\right)$
0	71474	0	0	0	0	0	0	0	0	0	0	$\beta>\beta_{0}$

Noisy data 1. Nearly normal, centered, i.i.d. noise and $\mathrm{SNR}=32.32 \mathrm{~dB}$:

$$
d=\left(\begin{array}{lllll}
69.13 & -171.95 & 113.74 & 150.27 & -36.09
\end{array}\right)^{\top} .
$$

$$
\boldsymbol{\beta}_{\mathbf{5}}=0<\beta_{5}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{4}}=0.068<\beta_{4}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{3}}=36.25<\beta_{3}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{1}}=3987.68<\beta_{1}^{\mathrm{U}}=\boldsymbol{\beta}_{\mathbf{0}}=63154,
$$

while $\beta_{2}=4002.83>\beta_{2}^{\mathrm{U}}=3972.54$. Hence, $\mathrm{J}=\mathbb{I}_{5}^{0} \backslash\{2\}$

k	c_{k}	$\widehat{\mathrm{C}}_{\mathrm{k}}=$ the optimal solution of $\left(\mathcal{C}_{\mathrm{k}}\right)$, singleton								$\widehat{\mathrm{C}}_{\mathrm{k}}=\widehat{\mathrm{R}}_{\beta}$		
4	0.068	0	$\mathbf{4 . 4 0}$	0	0	0	$\mathbf{8 . 7 1}$	$\mathbf{0 . 5 4}$	0	$\mathbf{2 . 9 5}$	0	$\beta \in\left(\beta_{4}, \beta_{3}\right)$
3	36.3141	0	$\mathbf{4 . 0 9}$	0	0	0	$\mathbf{8 . 8 8}$	0	0	$\mathbf{3 . 0 1}$	0	$\beta \in\left(\beta_{3}, \beta_{1}\right)$
2	4039	0	$\mathbf{3 . 3 3}$	0	0	0	$\mathbf{9 . 1 7}$	0	0	0	0	$\mathbf{n o}$
1	8011.68	0	0	0	0	0	$\mathbf{1 1 . 7 1}$	0	0	0	0	$\beta \in\left(\beta_{1}, \beta_{0}\right)$
0	71166	0	0	0	0	0	0	0	0	0	0	$\beta>\beta_{0}$

Noisy data 2. The noise is nearly normal, centered, i.i.d., $\mathrm{SNR}=25.74 \mathrm{~dB}$:

$$
\begin{aligned}
& d=\left(\begin{array}{lllll}
66.67 & -169.08 & 101.56 & 149.38 & -39.50
\end{array}\right)^{\top} . \\
& \beta_{0}=60287 \quad \beta_{1}=3825 \quad \beta_{2}=3037.1 \quad \beta_{3}=72.734 \quad \beta_{4}=0.0259 \quad \beta_{5}=0 .
\end{aligned}
$$

$\left\{\beta_{\mathrm{k}}\right\}$ is strictly decreasing and hence $\beta_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}}-\mathrm{c}_{\mathrm{k}-1}$
$\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ are quasi-completely equivalent.

k	c_{k}	$\widehat{\mathrm{C}}_{\mathrm{k}}=$ the optimal solution of $\left(\mathcal{C}_{\mathrm{k}}\right)$, singleton							$\widehat{\mathrm{C}}_{\mathrm{k}}=\widehat{\mathrm{R}}_{\beta}$		
4	0.0259	0	$\mathbf{8 . 5 4}$	0	0	$\mathbf{4 . 5 9}$	$\mathbf{4 . 9 0}$	$\mathbf{2 . 7 3}$	0	0	0
3	72.7601	0	$\mathbf{3 . 9 3}$	0	0	0	$\mathbf{8 . 7 0}$	0	0	$\mathbf{2 . 6 3}$	0
2	3109.86	0	$\mathbf{3 . 2 7}$	0	0	0	$\mathbf{8 . 9 5}$	0	0	0	0
1	6934.85	0	0	0	0	0	$\mathbf{1 1 . 4 4}$	0	0	0	0
	$\beta \in\left(\beta_{3}, \beta_{3}\right)$										
0	67222	0	0	0	0	0	0	0	0	0	0

Outline

1. Two optimization problems involving the ℓ_{0} pseudo norm
2. Joint optimality conditions for $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
3. Parameter values for equality between optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
4. Equivalences between the global minimizers of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$

- Partial equivalence
- Quasi-complete equivalence

5. On the optimal values of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$
6. Cardinality of the optimal sets of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

- Uniqueness of the optimal solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$ and of $\left(\mathcal{R}_{\beta}\right)$

7. Numerical tests
8. Conclusions and future directions

8. Conclusions and open questions

- The main equivalence result in a nutshell:

- The agreement between the optimal sets of problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ is driven by the critical parameters $\left\{\beta_{\mathrm{k}}\right\}_{\mathrm{k}=0}^{\mathrm{L}}$ which depend only on the optimal values c_{k} of problem $\left(\mathcal{C}_{\mathrm{k}}\right)$.
- Our comparative results clarify a proper choice between models $\left(\mathcal{C}_{\mathrm{k}}\right)$ and $\left(\mathcal{R}_{\beta}\right)$ in applications. If one needs solutions with a fixed number of nonzero entries, $\left(\mathcal{C}_{\mathrm{k}}\right)$ is the best choice. If only information on the perturbations is available, $\left(\mathcal{R}_{\beta}\right)$ is a more flexible model.
- If one can solve problem $\left(\mathcal{C}_{\mathrm{k}}\right)$ for all k , the global minimizers of problem $\left(\mathcal{R}_{\beta}\right)$ are immediate.
- Our detailed results can give rise to innovative algorithms.
- The degree of partial equivalence depends on the distribution of the coefficients of A and d.
- By specifying a class of matrices A and assumptions on data d, one can infer statistical knowledge on the optimal values c_{k} of problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ and thus on the critical parameters $\left\{\beta_{\mathrm{k}}\right\}$. Promising theoretical and practical results can be expected.
- A related open question is to know if the optimal solutions of $\left(\mathcal{R}_{\beta}\right)$ are able to eliminate some meaningless solutions of $\left(\mathcal{C}_{\mathrm{k}}\right)$.
- Extensions to analysis type penalties $\|D u\|_{0}$, to low rank matrix recovery, etc., are important.
- Other important results concern algorithms that are known to converge to local minimizers.

Remark 3 Problem $\left(\mathcal{R}_{\beta}\right)$ (for some $\beta>0$) and problems $\left(\mathcal{C}_{\mathrm{k}}\right)$ for $\mathrm{k} \in\{0,1, \ldots, \mathrm{M}\}$ have the same sets of (strict) local minimizers.

Thank you for the attention.

Thanks to Zuhair Nashed for the invitation

