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1. Two optimization problems involving the ℓ0 pseudo norm

A =
(
A1, · · · , AN

)
∈ RM×N (matrix) N > M d ∈ RM \ {0} (data)

⋄ A vector û ∈ RN is k-sparse if ∥u∥0 := ♯
{
i : u[i] ̸= 0

}
6 k.

One looks for a sparse vector û such that “Aû ≈ d”.

Two desirable optimization problems to find a sparse û:

(Ck) min
u∈RN

∥Au − d∥2
2 subject to ∥u∥0 6 k (constrained)

(Rβ) Fβ(u) = ∥Au − d∥2
2 + β∥u∥0 β > 0 (regularized)

⋄ These are NP hard (combinatorial) nonconvex problems.

Our goal: [M. N., ACHA 2016].

Clarify the relationship between the global minimizers of (Rβ) and (Ck).
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Applications: signal and image processing, sparse coding, compression, dictionary building,

compressive sensing, machine learning, model selection, classification...

∥ · ∥0 has served as a regularizer or as a penalty for a long time

− Markov random fields, MAP Fβ(u) = ∥Au− d∥22 + β∥Du∥0
Geman & Geman (1984), Besag (1986) - labeled images, stochastic algorithms

Robini & Reissman (2012) - global convergence / computation speed (!)

− Subset selection via (Rβ) - numerous algorithms - c.f. textbook Miller (2002)

− (Ck) – natural sparse coding constraint. Also the best K-term approximation [DeVore 1998)].

− Sparse-Land, M < N - strong assumptions on A (RIP, spark, etc.) / various approximations.

A huge amount of papers with approximating algorithms, e.g. Haupt&Nowak (06),

Blumensath&Davies (08), Tropp (10), Zhang et al (12), Beck&Eldar (14)

Typical assumptions: RIP or K spark(A) plus others (e.g. bounds on ∥A∥ etc.)

Important progress in solving problems (Ck) and (Rβ). The numerical schemes – common points.

=⇒ Explore the relationship between their optimal sets.
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The optimal values / the optimal solution setsof problems (Ck) and (Rβ):

(Ck) ck := inf
{
∥Au− d∥2

∣∣ u ∈ RN and ∥u∥0 6 k
}

Ĉk :=
{
u ∈ RN and ∥u∥0 6 k

∣∣ ∥Au− d∥2 = ck
}

(Rβ) rβ := inf
{
Fβ(u) | u ∈ RN

}
R̂β :=

{
u ∈ RN

∣∣ Fβ(u) = rβ
}

Theorem 1 For any d ∈ RM: Ĉk ̸= ∅ ∀ k and R̂β ̸= ∅ ∀ β > 0.

H1 Assumption : rank(A) = M < N no further reminder

How to evaluate the extent of assumption dependent properties ?

Definition 1 A property is generic on RM if it holds on a subset of RM \S where S is

closed in RM and its Lebesgue measure in RM is null.

A generic property is stronger than a property that holds only with probability one.

• In :=
(
{1, . . . , n}, <

)
and I0n :=

(
{0, 1, . . . ,n}, <

)
(totally strictly ordered)

• L := min
{
k ∈ IN

∣∣ ck = 0
}

(uniquely defined) generically L = M
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Main results

There is a strictly decreasing sequence {βk}k∈J ≡ {βJk
} for J ⊆ IL such that

û is global minimizer of Fβ for β ∈
(
βJk

, βJk−1

)
⇐⇒ û is global minimizer of (CJk

)

Equivalently {
R̂β | β ∈

(
βJk

, βJk−1

)}
= ĈJk

∀ k ∈ J

In a generic sense

R̂βJk
= ĈJk

∪ ĈJk+1

• All βJk
’s are obtained from the optimal values ck’s of the problems (Ck), k ∈ I0L.

• The global minimizers of problems (Ck) and (Rβ) are strict and generically uniques

• J is always nonempty

• For any n ∈ I0L \ J the global minimizers of (Cn) are not global minimizers of (Rβ) ∀ β

• When J = I0L, problems (Ck) and (Rβ) are quasi-completely equivalent:{
R̂β | β ∈ (βk, βk−1)

}
= Ĉk βk = ck − ck+1 ∀ k
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Notation

• ∥ . ∥ := ∥ . ∥2 .

• supp (u) :=
{
i ∈ IN : u[i] ̸= 0

}
• For any ω ⊂ I0N
Aω :=

(
Aω1 , . . . , Aω ♯ ω

)
∈ RM× ♯ ω, AT

ω is the transposed of Aω

uω :=
(
uω1 , . . . , uω ♯ ω

)T ∈ R ♯ ω

Definition 2 Let f : RN → R and S ⊆ RN. Consider the problem min {f(u) | u ∈ S}.

• û is a strict minimizer if there is a neighborhood O⊂S, û∈O so that f(u)>f(û) ∀u∈O\{û}.
• û is an isolated (local) minimizer if û is the only minimizer in an open subset O′ ⊂ O
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2. Common optimality conditions for (Ck) and (Rβ)

Goal: Derive tests relating the optimal solutions of (Ck) and (Rβ).

2.1 Preliminaries

A constrained quadratic optimization problem: given d ∈ RM and ω ⊆ IN

(Pω) min
u∈RN

∥Au− d∥2 subject to u[i] = 0 ∀ i ∈ I0N \ω

The convex problem (Pω) always has solutions, for any ω ∈ I0N and for any d ∈ RM.

Some useful facts on the relation of (Pω) to (Ck) and (Rβ) [M. N. SIIMS 2013]

(Rβ) û solves (Pω) for some ω ⊂ I0N ⇔ û is a (local) minimizer of Fβ , ∀ β > 0

û solves (Pω) for ω ⊂ I0N with rank(Aω) = ♯ ω ⇔ û = strict (local) minimizer of Fβ , ∀ β

(Ck) û solves (Pω) for ω ⊂ I0N with ♯ ω = k ⇔ û is a (local) minimizer of (Ck)

Remark 1 For any ω ⊂ IN with rank(Aω) = ♯ ω, the minimizer û of (Pω) is isolated.
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2.2 On the optimal solution sets of problem (Ck)

Lemma 1 c0 = ∥d∥2 and {ck}k>0 is decreasing with ck = 0 ∀ k > M.

Lemma 2 For k ∈ IM let (Ck) have a global minimizer û obeying

∥û∥0 = k− n for n > 1 .

Then Aû = d . Furthermore û ∈ Ĉm and cm = 0 ∀ m > k− n .

L := min
{
k ∈ IM | ck = 0

}
.

Example 1 One has L 6 M− 1 if d = Au for ∥u∥0 6 M− 1.

Theorem 2 û ∈ Ĉk for k ∈ I0L =⇒

 ∥û∥0 = k = rank (Aσ̂) for σ̂ := supp (û)

so û is a strict global minimizer of (Ck).

k > L+ 1 =⇒ ĈL ⊂ Ĉk.

Corollary 1 Ĉk ∩ Ĉn = ∅ ∀ (k,n) ∈ ( I0L )2 such that k ̸= n.
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Example 2

• A =

 1 0 1

0 1 1

 and d =

 1

1


û = (0, 0, 1)T = Ĉ1 (strict, rank(A3) = ∥û∥0) =⇒ c1 = 0 =⇒ L = 1.

û = (1, 1, 0)T is a strict global minimizer of (C2) because rank
(
Asupp (û)

)
= 2 and c2 = 0.

• A =

 1 0 1 0

0 1 0 1

 and d =

 1

0


Ĉ1 =

{
(1, 0, 0, 0)T, (0, 0, 1, 0)T

}
(strict minimizers) =⇒ c1 = 0 =⇒ L = 1.

For k > 2 all optimal solutions ̸∈ Ĉ1 are nonstrict and have the form û = (x, y, 1− x,−y)T,

x ∈ R \ {0, 1}. If y = 0 then ∥û∥0 = 2 and otherwise ∥û∥0 = 4.

Remark 2 By Theorem 2 the optimal value ck of problem (Ck) for any k ∈ I0L obeys

ck = min
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Ωk

}
where Ωk :=

{
ω ⊂ IN | ♯ ω = k = rank (Aω)

}
.
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2.3. Necessary and sufficient conditions

Proposition 1 û ∈ R̂β =⇒

 û ∈ Ĉk where k := ∥û∥0 ∈ I0L
Ĉk ⊆ R̂β for k := ∥û∥0 ∈ I0L

The global minimizers of Fβ are composed of some optimal sets Ĉk for k 6 L.

Ĉ = the collection of all optimal solutions Ĉk of problems (Ck) for all k ∈ I0L;
R̂ = the set of all global minimizers R̂β of Fβ for all β > 0

Ĉ :=
L∪

k=0

Ĉk and R̂ :=
∪
β>0

R̂β .

Theorem 3 R̂ ⊂ Ĉ .

When β ranges on (0,+∞), Fβ can have at most L+ 1 different sets of global minimizers

which are optimal solutions of (Ck) for k ∈ {0, . . . , L}.

Theorem 4 For any k ∈ I0L one has:

• Ĉk ⊆ R̂β if and only if Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ

• Ĉk = R̂β if and only if Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ \ Ĉk

12



Outline

1. Two optimization problems involving the ℓ0 pseudo norm

2. Joint optimality conditions for (Ck) and (Rβ)

3. Parameter values for equality between optimal sets of (Ck) and (Rβ)

− The entire list of parameter values

− Conditions for agreement between their optimal sets

− The effective parameters values

4. Equivalences between the global minimizers of (Ck) and (Rβ)

− Partial equivalence

− Quasi-complete equivalence

5. On the optimal values of (Ck) and (Rβ)

6. Cardinality of the optimal sets of (Ck) and of (Rβ)

− Uniqueness of the optimal solutions of (Ck) and of (Rβ)

7. Numerical tests

8. Conclusions and future directions

13



3. Parameter values for equality between optimal sets

3.1. The entire list of parameter values

Definition 3 (Critical parameter values)

βk := max

{
ck − ck+n

n
| n ∈ {1, . . . , L− k}

}
∀ k ∈ I0L−1 and βL = 0 ,

βU

k := min

{
ck−n − ck

n
| n ∈ {1, . . . , k}

}
∀ k ∈ IL and βU

0 ≡ β−1 := +∞ .

We have βL = 0 < βU
L and β0 < βU

0 .

The cases where βk < βU
k will be of particular interest.

Proposition 2 ∃ S – finite union of vector subspaces of dimension 6 M− 1 such that

d ∈ RM \S =⇒ βk ̸= βU

k ∀ k ∈ I0L .

βk ̸= βU

k ∀ k ∈ I0L is a generic property.
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3.2. Conditions for agreement between the optimal sets of (Ck) and (Rβ)

Theorem 5 ∀ k ∈ I0L

• Ĉk ⊆ R̂β if and only if


β0 6 β < βU

0 for k = 0 ;

βk 6 β 6 βU

k for k ∈ {1, . . . , L− 1} ;

βL < β 6 βU

L for k = L .

• Ĉk = R̂β if and only if βk < β < βU

k .

Proof based on Theorem 4.

To exploit Theorem 5 we have to clarify the links between (βk, β
U
k ) and ck

15



3.3. The effective parameters values

The global minimizers of Fβ are always in Ĉ (Theorem 3), so we are interested in the indexes k

for which there exist values of β such that Ĉk ⊂ R̂β . Their set is obtained from Theorem 5.

Definition 4 The effective index set J ∪ JE:

J :=
{
k ∈ I0L | βk < βU

k

}
and JE :=

{
m ∈ I0L | βm = βU

m

}
.

Ordering: J = {J0, J1, . . . , Jp} where p := ♯ J− 1 and Jk−1 < Jk ∀ k.

Further: (J0 = 0, Jp = L) ∈ J2 with βJ−1 := βU

J0
≡ βU

0 = +∞ and βJp ≡ βL = 0 .

The set J is always nonempty.

Lemma 3 R̂ ∩ Ĉk = ∅ if and only if k ∈ I0L \ {J ∪ JE} .
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Definition 3 for reminder:

βk := max
{ck − ck+n

n
| n ∈ {1, . . . , L− k}

}
∀ k ∈ I0L−1 and βL := 0 ,

βU
k := min

{ck−n − ck
n

| n ∈ {1, . . . , k}
}

∀ k ∈ IL and βU
0 := +∞ .

Simplification of {βk, β
U

k }k∈J∪JE

Proposition 3 Let {βk, β
U

k } and J be as in Definition 3 and Definition 4, resp. Then

(a) βJk
< βU

Jk
= βJk−1

∀ Jk ∈ J \ {J0} and βJU
0
≡ βJ−1 = +∞ .

(b) βJk
=

cJk
− cJk+1

Jk+1 − Jk
∀ Jk ∈ J \ {Jp} and βJp ≡ βL = 0 .

(c) { βm | m ∈ JE} ⊂
{
βJk

∣∣ Jk ∈ J \ {Jp}
}
.

{βk}k∈J is strictly decreasing and its first entry is β0.

17



Example 3 Let {ck}Lk=0 for L = 7 reads as

c0 = 48 c1 = 40 c2 = 30 c3 = 22 c4 = 14 c5 = 10 c6 = 4 c7 = 0 .

By Definition 3 the sequences {βk, β
U
k }

7
k=0 are given by

β0 = 9 β1 = 10 β2 = 8 β3 = 8 β4 = 5 β5 = 6 β6 = 4 β7 = 0

βU
0 = +∞ βU

1 = 8 βU
2 = 9 βU

3 = 8 βU
4 = 8 βU

5 = 4 βU
6 = 5 βU

7 = 4

From Definition 4, J = { J0 = 0, J1 = 2, J2 = 4, J3 = 6, J4 = 7} and JE = {3 } .

− One has βJk = βU
Jk+1

for any Jk ∈ J (Proposition 3(a)).

− The formula in Proposition 3(b) holds.

− {β3 | 3 ∈JE} ⇒ β3=βJ1 =8 ⇒ {β3 | 3 ∈JE} ⊂ {βJk | Jk∈J \ {J4}} (Proposition 3(c)).

− JE
βJ1

:= {m ∈ JE | βm = βJ1} = {3 ∈ JE | J1 < 3 < J2}, see Lemma 4.

− J has the smallest indexes so that {βk}k∈J = {9, 8, 5, 4, 0} is the longest strictly decreasing

subsequence of {βk}7k=0 containing β0 – see Proposition 4. One has {βk}k∈J = {βk}k∈J′ for

J′ := {0, 3, 4, 6, 7}; however, J′2 > J2.
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The location of {βm |m ∈ JE} is given by the (probably empty) subsets

JE

βJk
:= {m ∈ JE | βm = βJk

} .

Lemma 4 The sets JE

βJk
fulfill JE

βJk
= ∅ for k = p and for any k 6 p− 1

JE

βJk
= {m ∈ JE | Jk < m < Jk+1} .

J and {βk}k∈J are characterized next

Proposition 4 Let {βk}Lk=0 read as in Definition 3 and J as in Definition 4. Then 0 ∈ J

and J contains the smallest indexes such that {βk}k∈J is the longest strictly decreasing

subsequence of {βk}Lk=0 containing β0.

In order to find the effective J and {βk}k∈J we need only {βk}Lk=0 in Definition 3.
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4. Equivalence relations between the optimal sets of (Ck) and (Rβ)

4.1. Partial equivalence

Theorem 6 Let {βk} be as in Definition 3 and J as in Definition 4. Then:{
R̂β

∣∣ β ∈
(
βJk

, βJk−1

)}
= ĈJk

∀ Jk ∈ J ,

(
p∪

n=1

[
βJk

, βJk−1

])
∪
[
βJ0 , βJ−1

)
= [ 0,+∞) .

{
βJ0 , . . . , βJp−1

}
in Definition 4 partition (0,+∞) into ♯ J proper intervals. For any

β ∈
(
βJk , βJk−1

)
the optimal sets of (Rβ) and of (Cn) for n = Jk coincide.

If I0L \ J ̸= ∅, the optimal sets (Ck) for k ∈ I0L \ J cannot be optimal solutions of (Rβ) ∀ β > 0.

=⇒ partial equivalence.

{βJk
} is a finite set of isolated values hence β ̸= βJk

generically.
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The optimal sets of problem (Rβ) for βk, k ∈ J:

Theorem 7 Let H1 hold. Let {βk} be as in Definition 3 and J as in Definition 4. Then

R̂βJk
= ĈJk

∪ ĈJk+1
∪
(∪

m∈JE
βJk

Ĉm

)
∀ Jk ∈ J \ {Jp} ,

where JE
βJk

= {m ∈ JE | Jk < m < Jk+1} and Ĉk ∩ Ĉn = ∅ ∀(k, n) ∈ (J ∪ JE)
2
, k ̸= n.

Example 4 [Ex.3, cont.] We had J={0, 2, 4, 6, 7}, (βJ0 =9, βJ1 =8, βJ2 =5, βJ3 =4, βJ4 =0),

and JE
2 = {3} with βJE2

=8 and JE
k = ∅ otherwise. By Theorems 6 and 7

{R̂β |β>9}=Ĉ0 {R̂β |β∈(8, 9)}=Ĉ2 {R̂β |β∈(5, 8)}=Ĉ4 {R̂β |β∈(4, 5)}=Ĉ6 {R̂β |β∈(0, 4)}=Ĉ7

and R̂β=9 = Ĉ0 ∪ Ĉ2 R̂β=8 = Ĉ2 ∪ Ĉ3 ∪ Ĉ4 R̂β=5 = Ĉ4 ∪ Ĉ6 R̂β=4 = Ĉ6 ∪ Ĉ7 .

A partial equivalence between problems (Ck) and (Rβ) always exists.

For the ♯ J− 1 isolated values
{
βk | k ∈ J \ {L}

}
problem (Rβ) has normally two

optimal sets (Proposition 2).

22



4.2. Quasi-complete equivalence

Lemma 5 Let J be as in Definition 4. Then the following hold:

(a) If the sequence {βk}Lk=0 in Definition 3 is strictly decreasing, then its entries read as

βk = ck − ck+1 ∀ k ∈ I0L−1 and βL = 0, β−1 := βU

0 = +∞ . (1)

(b) If the sequence {βk}Lk=0 in (1) is strictly decreasing then J = I0L.

Theorem 8 Let {βk}Lk=0 in (1) be strictly decreasing. Then{
R̂β

∣∣ β ∈ (βk, βk−1)
}
= Ĉk ∀ k ∈ I0L

R̂βk
= Ĉk ∪ Ĉk+1 with Ĉk ∩ Ĉk+1 = ∅ ∀ k ∈ I0L−1 .

{βk}Lk=0 in (1) strictly decreasing means that ck−1 − ck > ck − ck+1, ∀ k ∈ IL−1.

Let u, û and ũ be optimal solutions of problems (Ck−1), (Ck) and (Ck+1), resp.

Denote σ := supp (u), û := supp (û) and σ̃ := supp (ũ).

The condition on ck’s reds as d
T (Proj(Aσ̂)− Proj(Aσ)) d > dT (Proj(Aσ̃)− Proj(Aσ̂)) d > 0.

Mid-way scenarios...
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5. On the optimal values of (Ck) and (Rβ)

Ωk :=
{
ω ⊂ IN | ♯ ω = k = rank (Aω)

}
.

Ek :=
∪

ω∈Ωk

range (Aω)
⊥ and Gk :=

∪
ω∈Ωk

range (Aω) .

E0 = GM = RM and EM = G0 = {0} by H1.

Proposition 5 Let L′ 6 M be arbitrarily fixed.

• ck > 0 ∀ k 6 L′ − 1 ⇐⇒ d ∈ RM \GL′−1 ;

• d ∈ RM \ (E2 ∪GL′−1) =⇒ ck−1 > ck ∀ k ∈ IL′ .

E2 and GM−1 are finite unions of vector subspaces of dimensions M− 2 and M− 1,

respectively. Hence, d ∈ RM \ (E2 ∪GM−1) is a generic property.

=⇒ {ck}Mk=0 is strictly decreasing and L = M generically.
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Proposition 6 k ∈ I0L =⇒ Fβ(û) = ck + β k ∀ û ∈ Ĉk .

By Theorem 3 R̂β ⊂ Ĉ =
∪L

k=0 Ĉk =⇒ the optimal value of problem (Rβ) reads as

rβ = min
{
ck + β k | k ∈ I0L

}
.

Corollary 2 The application β 7→ rβ : (0,+∞) → R fulfills

•

 rβ = cJk
+ β Jk

= Fβ(û) ∀ û ∈ ĈJk

if and only if β ∈


[βJ0 ,+∞) for J0 ≡ 0[
βJk

, βJk−1

]
for Jk ∈ J \ {0, L}(

0, βJp−1

]
for Jp ≡ L

• β 7→ rβ is continuous and concave.

• rβJk−1
> rβJk

∀ Jk ∈ J , rβJ0
= cJ0 = rβ ∀ β > βJ0 and rβJ0

> rβ ∀ β < βJ0 .

β 7→ rβ is affine increasing on each interval
(
βJk , βJk−1

)
with upward kinks at βJk for any

Jk ∈ J \ {L} and bounded by c0.
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Example 5 [Cont. of Example 3] From Corollary 2, β 7→ rβ is given by

β ∈ (0, 4] rβ = c7 + 7β = 7β rβ=4 = 28

β ∈ [4, 5] rβ = c6 + 6β = 4 + 6β rβ=5 = 34

β ∈ [5, 8] rβ = c4 + 4β = 14 + 4β rβ=8 = 46

β ∈ [8, 9] rβ = c2 + 2β = 30 + 2β rβ=9 = 48

β ∈ [9,+∞) rβ = c0 + 0β = 48

affine expressions
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6. Cardinality of the optimal sets of (Ck) and of (Rβ)

For any β > 0 and k ∈ I0L the optimal sets of problems (Ck) and (Rβ) are composed out

of a certain finite number of isolated (hence strict) minimizers.

6.1. Uniqueness of the optimal solutions of (Ck) and of (Rβ)

k 6 min{L,M− 1} and (û, ũ) ∈ (Ĉk)
2, û ̸= ũ. Then σ̂ := supp (û), σ̃ := supp (ũ) are in (Ωk)

2.

ck = ∥Aσ̂ûσ̂ − d∥2 = ∥Aσ̃ũσ̃ − d∥2 where σ̂ ̸= σ̃ .

Πω the orthogonal projector onto range (Aω)

∥Aσ̂ûσ̂ − d∥2 − ∥Aσ̃ũσ̃ − d∥2 = dT (Πσ̃ −Πσ̂) d = 0 .

H⋆ For K 6 min{M−1, L} fixed, A ∈ RM×N obeys Πω ̸= Πω ∀(ω, ω) ∈ Ω2
k ω ̸= ω ∀ k ∈ IK.

H⋆ is a generic property of all matrices in RM×N [M. N., SIIMS 2013].

∆K :=
∪K

k=1

∪
(ω,ω)∈(Ωk)

2

{
g ∈ RM

∣∣ ω ̸= ω and g ∈ ker (Πω −Πω)
}

dim(∆K) 6 M− 1, hence d ∈ RM \∆K generically.

H⋆ and d ∈ RM \∆K =⇒ (Ck) for k ∈ IK has a unique optimal solution.

K′ := max {k ∈ J | k 6 K} ⇒ (Rβ) has a unique global minimizer ∀β ∈ (βK′ ,+∞) \ {βk}k∈J
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7. Numerical tests

Two kind of experiments using matrices A ∈ RM×N for (M,N) = (5, 10), original vectors

uo ∈ RN and data samples d = Auo(+noise) with two different goals:

− to roughly see the behaviour of the parameters βk in Definition 3 ;

− to verify and illustrate our theoretical findings.

All results were calculated using an exhaustive combinatorial search.

7.1. Monte Carlo experiments on {βk} with 105 tests for (M,N) = (5, 10)

Two experiments, each one composed of 105 trials with A ∈ RM×N for (M,N) = (5, 10)

In each trial:

• an “original” uo ∈ RN, random support on {1, . . . ,N} with ∥uo∥0 6 M− 1 = 4.

• the coefficients of A and uo
supp (uo) – i.i.d.

• d = Auo+ i.i.d. centered Gaussian noise.

• compute the optimal values {ck} and then compute (βk, β
U
k ) by Definition 3.
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Two different distributions for A and uo
supp (uo)

⋄ Experiment N (0,10). A(i, j) and uo
supp (uo) ∼ N (0, 10). Support length

♯ supp (uo) ∈ {1, . . . , 4}, mean = 3.8. SNR of d in [10.1, 61.1], mean = 33.75 dB.

⋄ Experiment Uni [0,10]. A(i, j) and uo
supp (uo) ∼ uniform on [0, 10].

♯ supp (uo) ∈ {1, . . . , 4}, mean = 3.8. SNR of d in [20, 55], mean = 28.95 dB.

Nk := ♯
{
k ∈ I0M | βk > βk−1

}
.

Table 1: Results on the behaviour of {βk} in Definition 3 for two experiments, each one

composed of 105 random trials. For k > 3 we have found Nk = 0.

βk < βk−1,∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR) mean(∥uo∥0)

N (0, 10) 93.681 % 6.254 % 0.065 % 33.75 3.7922

Uni [0, 10] 98.783 % 1.216 % 0.001 % 28.95 3.7936

Observations:

• L = M in each trial (Remainder: L := min
{
k ∈ IN | ck = 0

}
);

• {ck}Mk=0 was always strictly decreasing (see Proposition 5);

• βk ̸= βU
k in each trial (see Proposition 3), so JE = ∅;

• For every A there were d so that {βk := ck − ck−1}Lk=0 was strictly decreasing
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6.2. Tests on quasi-equivalence with a selected matrix and selected data

A =



13.94 16.36 4.88 −3.09 −15.42 1.31 −3.18 −12.13 −4.26 −10.09

7.06 −6.48 −9.07 −8.37 −2.72 −17.42 −5.83 −3.81 3.87 −1.80

11.63 6.73 −4.75 −6.28 3.42 6.68 −1.64 13.23 9.03 −20.27

−7.54 12.74 −6.66 5.01 4.84 8.98 −9.35 3.85 7.18 4.09

3.22 −10.40 −5.02 16.70 9.53 −5.49 11.88 −3.62 17.36 7.34


uo =

(
0 4 0 0 0 9 0 0 3 0

)T

.

A(i, j) nearly normal distribution with variance 10 and rank(A) = M = 5

Problem (CM) has ♯ΩM = 252 optimal solutions; none of them is shown.

Since β0 < βU
0 = +∞, in all cases Ĉ0 =

{
R̂β |β > β0

}
by Theorem 5.

We selected a couple (A, uo) so that βk are seldom strictly decreasing compared to Tab. 1.

Table 2: 105 trials where d = Auo+ i.i.d. centered Gaussian noise.

βk < βk−1,∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR) mean(∥uo∥0)

uo in (2) 29.41 % 70.59 % 0 % 36.25 3
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Noise-free data

d = Auo =
(

64.45 −171.09 114.13 153.32 −38.93
)T

.

û = uo is an optimal solution to problems (Ck) with ck = 0 for k ∈ {3, 4, 5} and L = 3.

β3 = 0 < βU
3 = β1 = 3872.46 < βU

1 = β0 = 63729 and β2 = 3968 > βU
2 = 3776.82 .

J = {0, 1, 3}

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

3

2

1

0

0

3968

7745

71474

0 4 0 0 0 9 0 0 3 0

0 3.25 0 0 0 9.29 0 0 0 0

0 0 0 0 0 11.76 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β ∈ (β3, β1)

no

β ∈ (β1, β0)

β > β0
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Noisy data 1. Nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

d =
(

69.13 −171.95 113.74 150.27 −36.09
)T

.

β5 = 0 < βU
5 = β4 = 0.068 < βU

4 = β3 = 36.25 < βU
3 = β1 = 3987.68 < βU

1 = β0 = 63154 ,

while β2 = 4002.83 > βU
2 = 3972.54. Hence, J = I05 \ {2}

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4

3

2

1

0

0.068

36.3141

4039

8011.68

71166

0 4.40 0 0 0 8.71 0.54 0 2.95 0

0 4.09 0 0 0 8.88 0 0 3.01 0

0 3.33 0 0 0 9.17 0 0 0 0

0 0 0 0 0 11.71 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)

β ∈ (β3, β1)

no

β ∈ (β1, β0)

β > β0
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Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

d =
(

66.67 −169.08 101.56 149.38 −39.50
)T

.

β0 = 60287 β1 = 3825 β2 = 3037.1 β3 = 72.734 β4 = 0.0259 β5 = 0 .

{βk} is strictly decreasing and hence βk = ck − ck−1

(Ck) and (Rβ) are quasi-completely equivalent.

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4

3

2

1

0

0.0259

72.7601

3109.86

6934.85

67222

0 8.54 0 0 4.59 4.90 2.73 0 0 0

0 3.93 0 0 0 8.70 0 0 2.63 0

0 3.27 0 0 0 8.95 0 0 0 0

0 0 0 0 0 11.44 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)

β ∈ (β3, β2)

β ∈ (β2, β1)

β ∈ (β1, β0)

β > β0
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8. Conclusions and open questions

• The main equivalence result in a nutshell:

ĈJk ∪ ĈJk+1 ∪ Ĉ0
Jk︸ ︷︷ ︸

R̂β = ĈL ĈJk+1
↑ ĈJk Ĉ0

0 = βL < . . . < βJk+1
< βJk

< βJk−1
< . . . < βJ0 < ∞

• The agreement between the optimal sets of problems (Ck) and (Rβ) is driven by the critical

parameters {βk}Lk=0 which depend only on the optimal values ck of problem (Ck).

• Our comparative results clarify a proper choice between models (Ck) and (Rβ) in

applications. If one needs solutions with a fixed number of nonzero entries, (Ck) is the best

choice. If only information on the perturbations is available, (Rβ) is a more flexible model.

• If one can solve problem (Ck) for all k, the global minimizers of problem (Rβ) are immediate.

• Our detailed results can give rise to innovative algorithms.

• The degree of partial equivalence depends on the distribution of the coefficients of A and d.
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• By specifying a class of matrices A and assumptions on data d, one can infer statistical

knowledge on the optimal values ck of problems (Ck) and thus on the critical

parameters {βk}. Promising theoretical and practical results can be expected.

• A related open question is to know if the optimal solutions of (Rβ) are able to eliminate

some meaningless solutions of (Ck).

• Extensions to analysis type penalties ∥Du∥0, to low rank matrix recovery, etc., are important.

• Other important results concern algorithms that are known to converge to local minimizers.

Remark 3 Problem (Rβ) (for some β > 0) and problems (Ck) for k ∈ {0, 1, . . . ,M} have the

same sets of (strict) local minimizers.
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