ℓ_{1}-concave versus $\ell_{1}-$ TV energies: Questions and challenges

Mila Nikolova
CMLA, ENS Cachan, CNRS
61 Av. President Wilson, F-94230 Cachan, France

Convex Relaxation Methods
for Geometric Problems in Scientific Computing
February 11-15, 2013, IPAM - UCLA

1. Problem formulation

image \boldsymbol{u} is stored in a vector in $\mathbb{R}^{p} \quad$ data $\boldsymbol{v} \in \mathbb{R}^{q}$

$$
\begin{aligned}
\mathcal{F}(u) & =\|A u-v\|_{1}+\beta \sum_{j \in J} \varphi\left(\left\|\mathrm{G}_{j} u\right\|_{2}\right) \\
& =\sum_{i \in I}\left|a_{i} u-v[i]\right|+\beta \sum_{j \in J} \varphi\left(\left\|\mathrm{G}_{j} u\right\|_{2}\right), \quad \beta>0
\end{aligned}
$$

where

$$
\begin{aligned}
I & \stackrel{\text { def }}{=}\{1, \cdots, q\}, \\
J & \stackrel{\text { def }}{=}\{1, \cdots, r\} .
\end{aligned}
$$

- G_{j} are matrices or vectors (e.g. discrete gradient operators)
- A is a matrix of any rank with rows $a_{i} \in \mathbb{R}^{1 \times p}$
- $\varphi(t)=t \quad \Rightarrow \quad \ell_{1}-\mathrm{TV}$
[Chan, Esedoglu 2005]
- In our case:
φ is concave on \mathbb{R}_{+}
This family of objective functions has never been considered before

	(f1)	(f2)	(f3)	(f4)
$\varphi(t)$	$\frac{\alpha t}{\alpha t+1}$	$1-\alpha^{t}$	$\ln (\alpha t+1)$	$(t+\varepsilon)^{\alpha}$
	$\alpha>0$	$0<\alpha<1$	$\alpha>0$	$0<\alpha<1, \varepsilon>0$
Functions $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$				

Plots of the PFs φ. Note that (f1) an (f2) are bounded above, (f3) and (f4) are coercive.

Motivation

\hat{u} - (local) minimizer of \mathcal{F}

- nonsmooth regularization $\sum_{j \in J} \varphi\left(\left\|\mathrm{G}_{j} u\right\|_{2}\right)$ with $\varphi^{\prime}(0)>0$ (e.g. TV)

$$
\Rightarrow \quad \text { many } j \text { such that } \mathrm{G}_{j} \hat{u}=0 \quad \text { [Nikolova 2000, 2004] }
$$

- ℓ_{1} data fidelity $\|A u-v\|_{1}=\sum_{i \in I}\left|a_{i} u-v[i]\right|$

$$
\Rightarrow \quad \text { many } i \text { such that } a_{i} \hat{u}=v[i] \quad \text { [Nikolova 2002, 2004] }
$$

- our \mathcal{F} can be seen as an extension of L1-TV

$$
? ? ? \quad \text { many } i, j \text { such that } a_{i} \hat{u}=v[i] \text { and } \mathrm{G}_{j} \hat{u}=0
$$

2. Peculiar Properties - 1D tests
(Global) minimizers of $\mathcal{F}(u)=\|u-v\|_{1}+\beta \sum_{i=1}^{p-1} \varphi(|u[i+1]-u[i]|)$

$$
\beta \in\{157, \cdots, 400\}
$$

$\beta \in 0.1 \times\{16, \cdots, 30\}$
Data samples (০००), Minimizer samples $\hat{u}[i](+++)$.

(a) $\varphi(t)=\frac{\alpha t}{\alpha t+1}, \alpha=4, \beta=3$

(c) $\varphi(t)=\ln (\alpha t+1), \alpha=2, \beta=1.3$

(b) $\varphi(t)=1-\alpha^{t}, \alpha=0.1, \beta=2.5$

(d) $\varphi(t)=(t+0.1)^{\alpha}, \alpha=0.5, \beta=1.4$

Denoising: Data samples (০০০) are corrupted with Gaussian noise. Minimizer samples $\hat{u}[i](+++)$. Original $(---)$. $\boldsymbol{\beta}$-the largest value so that the gate at 71 survives.

Constant pieces—solid black line.
Data points $v[i]$ fitted exactly by the minimizer $\hat{u}(\diamond)$.

$$
\varphi(t)=t, \beta=0.8 \quad\left(\ell_{1}-\mathrm{TV}\right)
$$

the minimizer for $\varphi(t)=\frac{\alpha t}{\alpha t+1}, \alpha=4, \beta=3$ closest to $\left(\ell_{1}-\mathrm{TV}\right)$

error for $\varphi(t)=\frac{\alpha t}{\alpha t+1}, \alpha=4, \beta=3$
$\|$ original $-\hat{\boldsymbol{u}} \|_{\infty}=0.2462$

$$
\varphi(t)=\frac{\alpha t}{\alpha t+1}, \alpha=4, \beta=3
$$

original $\in[0,12]$, data $v \in[-0.59,12.83]$

Luckily, he same minimizers \hat{u} were obtained using continuation and Viterbi algorithm (15×10^{3} states) which yields a global minimizer.

Numerical evidence:
critical values $\beta_{1}, \cdots, \beta_{n}$ such that

- $\beta \in\left[\beta_{i}, \beta_{i+1}\right) \Rightarrow$ the minimizer remains unchanged
- $\beta \geqslant \beta_{i+1} \quad \Rightarrow$ the minimizer is simplified

Result proven (under conditions) for the minimizers of $L_{1}-\mathrm{TV} \quad$ [Chan, Esedoglu 2005]

Main assumptions

$$
\mathrm{G}=\left[\mathrm{G}_{1}^{T}, \cdots, \mathrm{G}_{r}^{T}\right]^{T}
$$

H1 $\operatorname{ker} A \cap \operatorname{ker} G=\{0\}$.
$\mathbf{H} 2 \varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ in \mathcal{F} obeys:

- $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is \mathcal{C}^{2} on $\mathbb{R}_{+}^{*} \stackrel{\text { def }}{=} \mathbb{R}_{+} \backslash\{0\}$ and $\varphi(t)>\varphi(0), \quad \forall t>0$;
- $\varphi^{\prime}\left(0^{+}\right)>0$ and $\varphi^{\prime}(t)>0$ on \mathbb{R}_{+}^{*}.
- $\varphi^{\prime \prime}$ is increasing on $\mathbb{R}_{+}^{*}, \varphi^{\prime \prime}(t)<0, \forall t>0$ and $-\infty<\lim _{t \searrow 0} \varphi^{\prime \prime}(t)<0$

Example

Given $v \neq 0$, consider the function

$$
\mathcal{F}(u)=|u-v|+\beta \varphi(|u|) \text { for } \varphi(u)=\frac{\alpha u}{1+\alpha u}, \quad \forall u \in \mathbb{R}
$$

The necessary conditions for \mathcal{F} to have a (local) minimum at $\hat{u} \neq 0$ and $\hat{u} \neq v$ fail:

$$
\hat{u} \notin\{0, v\} \Rightarrow\left\{\begin{array}{r}
D \mathcal{F}(\hat{u})=\operatorname{sign}(\hat{u}-v)+\beta \varphi^{\prime}(|\hat{u}|) \operatorname{sign}(\hat{u})=0 \\
D^{2} \mathcal{F}(\hat{u})=\beta \varphi^{\prime \prime}(|\hat{u}|)<0
\end{array}\right.
$$

\mathcal{F} does have minimizers $\Rightarrow \hat{\boldsymbol{u}} \in\{0, v\}$.

3. Main theoretical results

- $\left\{\hat{u} \in \mathbb{R}^{p} \mid \mathcal{F}(\hat{u})=\inf _{u \in \mathbb{R}^{p}} \mathcal{F}(u)\right\} \neq \varnothing$
- All (local) minimizers of \mathcal{F} are strict
- Let $\hat{\boldsymbol{u}} \in \mathbb{R}^{p}$ be a (local) minimizer of \mathcal{F}. Set

$$
\begin{aligned}
& \widehat{I}_{0}=\left\{i \in I: a_{i} \hat{u}=v[i]\right\} \\
& \widehat{J}_{0}=\left\{j \in J: \mathrm{G}_{j} \hat{u}=0\right\}
\end{aligned}
$$

$\Rightarrow \hat{\boldsymbol{u}}$ is the unique solution of the liner system

$$
\begin{cases}a_{i} u=v[i] & \forall i \in \widehat{I}_{0} \\ G_{j} u=\mathbf{0} & \forall j \in \widehat{J}_{0}\end{cases}
$$

$$
\Rightarrow
$$

(\star) the matrix $H_{\widehat{I}_{0}, \widehat{J}_{0}}$ with rows $\left(a_{i}, \forall i \in \widehat{I}_{0}\right.$ and $\left.\mathrm{G}_{j}, \forall j \in \widehat{J}_{0}\right)$ has full column rank $\quad\left(\operatorname{rank}\left(H_{\widehat{I}_{0}, \widehat{J}_{0}}\right)=p\right)$
(\star) is a necessary condition for a (local) minimizer

Example

The data vector v is of length $\boldsymbol{p}=\mathbf{8 0}$.
One checks that the minimizer meets

$$
\widehat{I}_{0}^{c}=(28,29,30,31,69,70) \quad \text { and } \quad \widehat{J}_{0}^{c}=(4,20,44,59)
$$

The matrix $H_{\widehat{I}_{0}, \widehat{J}_{0}}$ is of size 149×80 and rank $H_{\widehat{I}_{0}, \widehat{J}_{0}}=p=80$.
$\Rightarrow \quad$ "contrast invariance" of (local) minimizers \hat{u} w.r.t v (like $\ell_{1}-\mathrm{TV}$)

Is there another way to design / learn the matrix $\boldsymbol{H}_{\widehat{I}_{0}, \widehat{J}_{0}}$???

- Let $\hat{u} \in \mathbb{R}^{p}$ be a (local) minimizer of \mathcal{F}. Then

$$
1 \leqslant k \leqslant p \Rightarrow \begin{cases}\exists i \text { obeying } a_{i} \hat{u}=v[i] & \text { such that } a_{i}[k] \neq 0 \\ \exists j \text { obeying } \mathrm{G}_{j} \hat{u}=0 & \text { or } \\ \text { such that } \mathrm{G}_{j}(k) \neq 0\end{cases}
$$

where $\mathrm{G}_{j}(k)$ is the k-th column of the linear operator G_{j}

- $\Rightarrow \quad$ each pixel of a (local) minimizer \hat{u} of \mathcal{F} is involved in (at least) one data equation that is fitted exactly $a_{i} \hat{u}=v[i]$, or in (at least) one vanishing operator $\left\|\mathrm{G}_{j} \hat{u}\right\|_{2}=0$, or in both types of equations.
- If $A=\mathrm{Id}$ and G_{j} yield discrete gradients or first-order finite differences between adjacent samples, a (local) minimizer is composed partly of constant patches, partly of pixels that fit data samples exactly, remind the figure.

4. Comparison with $\ell_{1}-\mathrm{TV}$

$$
F(u)=\sum_{i \in I}\left|a_{i} u-v[i]\right|+\beta \sum_{j \in J}\left\|\mathrm{G}_{j} u\right\|_{2}, \quad \beta>0
$$

H1 $\operatorname{ker} A \cap \operatorname{ker} G=\{0\}$.
The set of minimizers: $\widehat{U}=\left\{\hat{u} \mid F(\hat{u})=\min _{u \in \mathbb{R}^{p}} F(u)\right\}$
Typically, \widehat{U} is not a singleton.
\Rightarrow the matrix with rows $\left(a_{i}, \forall i \in \widehat{I}_{0}\right.$ and $\left.\mathrm{G}_{j}, \forall j \in \widehat{J}_{0}\right)$ typically does not have full column rank
(*) If $\hat{u}_{1} \in \widehat{U}$ and $\hat{u}_{2} \in \widehat{U}, \hat{u}_{1} \neq \hat{u}_{2}$ then

$$
\mathbf{G} \hat{u}_{1} \propto \mathbf{G} \hat{u}_{2}
$$

i.e. \hat{u}_{1} and \hat{u}_{2} share the same level lines.
[Durand, Nikolova 2007]

5. Numerical scheme

Continuation approach

$$
\begin{aligned}
& \varphi_{\varepsilon}, \varepsilon \in[0,1] \text { where } \varphi_{0}(t)=t \text { and } \varphi_{1}=\varphi \\
& \varphi_{\varepsilon}(t)=\psi_{\varepsilon}(t)+\alpha_{\varepsilon} t \quad \text { where } \quad \alpha_{\varepsilon}=\varphi_{\varepsilon}^{\prime}\left(0^{+}\right)
\end{aligned}
$$

φ_{ε} for $\varepsilon \in(0,1]$ satisfies H 2 .

$$
\begin{aligned}
\mathcal{F}_{\varepsilon}(u) & =\|A u-v\|_{1}+\beta \alpha_{\varepsilon} \sum_{j \in J}\left\|\mathrm{G}_{j} u\right\|_{2}+\beta \Psi_{\varepsilon}(u), \\
\text { where } \quad \Psi_{\varepsilon}(u) & =\sum_{j \in J} \psi_{\varepsilon}\left(\left\|\mathrm{G}_{j} u\right\|_{2}\right) .
\end{aligned}
$$

For $\varepsilon=0: \quad \mathcal{F}_{0}(u)=\|A u-v\|_{1}+\beta \alpha_{\varepsilon} \operatorname{TV}(u)$

For each ε fixed—variable splitting and penalty decomposition techniques:
$\mathcal{J}_{\varepsilon, \gamma}(u, w, z)=\gamma\|A u-w\|_{2}^{2}+\|w-v\|_{1}+\beta \Psi_{\varepsilon}(u)+\gamma\|\mathrm{G} u-z\|_{2}^{2}+\beta \alpha_{\varepsilon} \sum_{j \in J}\left\|z_{j}\right\|_{2}$, for $\gamma \rightarrow \infty$
Alternate optimization: $\left\{\begin{array}{l}z^{(k)}=\arg \min _{z} \mathcal{J}_{\varepsilon, \gamma}\left(u^{(k-1)}, w^{(k-1)}, z^{(k-1)}\right) \\ w^{(k)}=\arg \min _{w} \mathcal{J}_{\mathcal{J}, \gamma}\left(u^{(k-1)}, w^{(k-1)}, z^{(k)}\right) \\ u^{(k)}=\arg \min _{u} \mathcal{J}_{\varepsilon, \gamma}\left(u, w^{(k)}, z^{(k)}\right)\end{array}\right.$
Then

$$
\begin{gathered}
z_{j}^{(k)}=\frac{\mathrm{G}_{j} u^{(k-1)}}{\left\|\mathrm{G}_{j} u^{(k-1)}\right\|_{2}} \max \left\{\left\|\mathrm{G}_{j} u^{(k-1)}\right\|_{2}-\frac{\beta \alpha_{\varepsilon}}{2 \gamma}, 0\right\}, \quad \forall j \in J . \\
w_{i}^{(k)}=\frac{A u^{(k-1)}-v}{\left\|A u^{(k-1)}-v\right\|_{2}} \max \left\{\left\|A u^{(k-1)}-v\right\|_{2}-\frac{1}{2 \gamma}, 0\right\}, \quad \forall i \in I . \\
u^{(k)} \text { solves } \arg \min _{u \in \mathbb{R}^{p}}\left\{\gamma\left\|A u-w^{(k)}\right\|_{2}^{2}+\gamma\left\|\mathrm{G} u-z^{(k)}\right\|_{2}^{2}+\beta \Psi_{\varepsilon}(u)\right\}
\end{gathered}
$$

where Quasi Newton method with preconditioning is used
\Rightarrow fast algorithm

6. Numerical tests

MR Image Reconstruction from Highly Undersampled Data

0 -filling Fourier

$\|\cdot\|_{2}^{2}+$ TV

$\|\cdot\|_{1}+\mathrm{TV}$

Our method

Reconstructed images from 7% noisy randomly selected samples in the k-space.

0 -filling Fourier

Our method

Reconstructed images from 5% noisy randomly selected samples in the k-space. Our method for $\varphi(t)=\frac{\alpha t}{\alpha t+1}$.

Cartoon

Observed

ℓ_{1}-TV

Our method, $\varphi(t)=\frac{\alpha t}{\alpha t+1}$

7. Concluding remarks

- The (local) minimizers of the proposed objectives inherit some features of $L_{1}-\mathrm{TV}$ (e.g. "scale-invariance") but in a much sharper way.
- In practice, they neatly outperform $L_{1}-\mathrm{TV}$.
- All (local) minimizers are strict.
- Bounded above functions (like f1 and f2) yield much better numerical results than coercive functions (like f3 and f4).
We do not have a theoretical explanation.
- The regularization parameter β is not involved in the computation of a local minimizer.
Implicitly, β helps the selection of the subsets \widehat{I}_{0} and \widehat{J}_{0}.
The ordering of the (local) minimizers \hat{u} of \mathcal{F} according to their value $\mathcal{F}(\hat{u})$ is determined by β.

Thank you for your attention!

Thanks to the Organizers for the invitation and for the excellent conference!

Main reference:

M. Nikolova, M. Ng and C. P. Tam, On ℓ_{1} Data Fitting and Concave Regularization for Image Recovery, SIAM J. on Scientific Computing, vol. 35, No. 1, pp. A397-A430, online 24 Jan 2013

More details:
http://mnikolova.perso.math.cnrs.fr.

