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1. Problem formulation

image u is stored in a vector in Rp data v ∈ Rq

F(u) = ∥Au − v∥1 + β
∑
j∈J

φ(∥Gju∥2)

=
∑
i∈I

∣∣aiu − v[i]
∣∣ + β

∑
j∈J

φ(∥Gju∥2) , β > 0 ,

where I
def
= {1, · · · , q} ,

J
def
= {1, · · · , r} .

• Gj are matrices or vectors (e.g. discrete gradient operators)

• A is a matrix of any rank with rows ai ∈ R1×p

• φ(t) = t ⇒ ℓ1 − TV [Chan, Esedoglu 2005]

• In our case:
φ is concave on R+

This family of objective functions has never been considered before
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Plots of the PFs φ. Note that (f1) an (f2) are bounded above, (f3) and (f4) are coercive.

3



Motivation

û—(local) minimizer of F

• nonsmooth regularization
∑
j∈J

φ(∥Gju∥2) with φ′(0) > 0 (e.g. TV)

⇒ many j such that Gjû = 0 [Nikolova 2000, 2004]

• ℓ1 data fidelity ∥Au− v∥1 =
∑
i∈I

∣∣aiu− v[i]
∣∣

⇒ many i such that aiû = v[i] [Nikolova 2002, 2004]

• our F can be seen as an extension of L1-TV

??? many i, j such that aiû = v[i] and Gjû = 0

2. Peculiar Properties — 1D tests
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(Global) minimizers of F(u) = ∥u − v∥1 + β

p−1∑
i=1

φ(|u[i + 1] − u[i]|)

φ(t) = αt
αt+1

for α = 4 φ(t) = ln(αt + 1) for α = 2
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Data samples (◦◦◦), Minimizer samples û[i] (+++).
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(a) φ(t) = α t
α t+1 , α = 4, β = 3 (b) φ(t) = 1− αt, α = 0.1, β = 2.5
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(c) φ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) φ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Denoising: Data samples (◦◦◦) are corrupted with Gaussian noise. Minimizer samples

û[i] (+++). Original (−−−). β—the largest value so that the gate at 71 survives.
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Zooms.

Constant pieces—solid black line.

Data points v[i] fitted exactly by the minimizer û (�).
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φ(t) = t, β = 0.8 (ℓ1 − TV) the minimizer for φ(t) = α t
α t+1

, α = 4, β = 3

closest to (ℓ1 − TV)
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error for φ(t) = α t
α t+1

, α = 4, β = 3 φ(t) = α t
α t+1 , α = 4, β = 3

∥original− û∥∞ = 0.2462 original ∈ [0, 12], data v ∈ [−0.59, 12.83]
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Luckily, he same minimizers û were obtained using continuation and

Viterbi algorithm (15× 103 states) which yields a global minimizer.

Numerical evidence:

critical values β1, · · · , βn such that

• β ∈ [βi, βi+1) ⇒ the minimizer remains unchanged

• β > βi+1 ⇒ the minimizer is simplified

Result proven (under conditions) for the minimizers of L1 − TV [Chan, Esedoglu 2005]
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Main assumptions

G = [GT
1 , · · · ,GT

r ]
T

H1 kerA ∩ kerG = {0} .

H2 φ : R+ → R in F obeys:

• φ : R+ → R+ is C2 on R∗
+

def
= R+ \ {0} and φ(t) > φ(0), ∀t > 0;

• φ′(0+) > 0 and φ′(t) > 0 on R∗
+.

• φ′′ is increasing on R∗
+, φ

′′(t) < 0, ∀t > 0 and −∞ < lim
t↘0

φ′′(t) < 0
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Example

Given v ̸= 0, consider the function

F(u) = |u− v|+ βφ(|u|) for φ(u) =
αu

1 + αu
, ∀u ∈ R

The necessary conditions for F to have a (local) minimum at û ̸= 0 and û ̸= v fail:

û ̸∈ {0, v} ⇒


DF(û) = sign(û− v) + βφ′(|û|)sign(û) = 0

D2F(û) = βφ′′(|û|) < 0

F does have minimizers ⇒ û ∈ {0, v} .
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3. Main theoretical results

•
{
û ∈ Rp | F(û) = inf

u∈Rp
F(u)

}
̸= ∅

• All (local) minimizers of F are strict

• Let û ∈ Rp be a (local) minimizer of F . Set

Î0 = {i ∈ I : aiû = v[i]}

Ĵ0 = {j ∈ J : Gjû = 0}

⇒ û is the unique solution of the liner system aiu = v[i] ∀i ∈ Î0

Gju = 0 ∀j ∈ Ĵ0

⇒
(⋆) the matrix HÎ0,Ĵ0

with rows
(
ai,∀i ∈ Î0 and Gj, ∀j ∈ Ĵ0

)
has full column rank (rank (HÎ0,Ĵ0

) = p)

(⋆) is a necessary condition for a (local) minimizer
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Example

71

0

10

The data vector v is of length p = 80.

One checks that the minimizer meets

Îc0 = (28 , 29 , 30 , 31 , 69 , 70) and Ĵc
0 = (4 , 20 , 44 , 59) .

The matrix HÎ0,Ĵ0
is of size 149 × 80 and rankHÎ0,Ĵ0

= p = 80.

⇒ “contrast invariance” of (local) minimizers û w.r.t v (like ℓ1 − TV)

Is there another way to design / learn the matrix HÎ0,Ĵ0
???
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• Let û ∈ Rp be a (local) minimizer of F . Then

1 6 k 6 p ⇒


∃i obeying ai û = v[i] such that ai[k] ̸= 0

or

∃j obeying Gj û = 0 such that Gj(k) ̸= 0

where Gj(k) is the k-th column of the linear operator Gj

• ⇒ each pixel of a (local) minimizer û of F is involved in (at least) one data

equation that is fitted exactly aiû = v[i], or in (at least) one vanishing operator

∥Gj û∥2 = 0, or in both types of equations.

• If A = Id and Gj yield discrete gradients or first-order finite differences between

adjacent samples, a (local) minimizer is composed partly of constant patches, partly

of pixels that fit data samples exactly, remind the figure.
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4. Comparison with ℓ1 − TV

F (u) =
∑
i∈I

∣∣aiu − v[i]
∣∣ + β

∑
j∈J

∥Gju∥2 , β > 0 .

H1 kerA ∩ kerG = {0} .

The set of minimizers: Û = {û | F (û) = min
u∈Rp

F (u)}

Typically, Û is not a singleton.

⇒ the matrix with rows
(
ai,∀i ∈ Î0 and Gj,∀j ∈ Ĵ0

)
typically

does not have full column rank

(⋆) If û1 ∈ Û and û2 ∈ Û , û1 ̸= û2 then

Gû1 ∝ Gû2

i.e. û1 and û2 share the same level lines. [Durand, Nikolova 2007]
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5. Numerical scheme

Continuation approach

φε, ε ∈ [0, 1] where φ0(t) = t and φ1 = φ

φε(t) = ψε(t) + αεt where αε = φ′
ε(0

+).

φε for ε ∈ (0, 1] satisfies H2.

Fε(u) = ∥Au− v∥1 + βαε

∑
j∈J

∥Gju∥2 + βΨε(u) ,

where Ψε(u) =
∑
j∈J

ψε(∥Gju∥2) .

For ε = 0: F0(u) = ∥Au− v∥1 + βαεTV(u)
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For each ε fixed—variable splitting and penalty decomposition techniques:

Jε,γ(u,w, z) = γ∥Au−w∥22+∥w−v∥1+βΨε(u)+γ∥Gu−z∥22+βαε

∑
j∈J

∥zj∥2 , for γ → ∞

Alternate optimization:


z(k) = argmin

z
Jε,γ(u

(k−1), w(k−1), z(k−1))

w(k) = argmin
w

Jε,γ(u
(k−1), w(k−1), z(k))

u(k) = argmin
u

Jε,γ(u,w
(k), z(k))

Then

z
(k)
j =

Gju
(k−1)

∥Gju(k−1)∥2
max

{
∥Gju

(k−1)∥2 −
βαε

2γ
, 0

}
, ∀j ∈ J .

w
(k)
i =

Au(k−1) − v

∥Au(k−1) − v∥2
max

{
∥Au(k−1) − v∥2 −

1

2γ
, 0

}
, ∀i ∈ I .

u(k) solves arg min
u∈Rp

{
γ∥Au− w(k)∥22 + γ∥Gu− z(k)∥22 + βΨε(u)

}
where Quasi Newton method with preconditioning is used

⇒ fast algorithm
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6. Numerical tests

MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method
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Reconstructed images from 7% noisy randomly selected samples in the k-space.
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0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method
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Reconstructed images from 5% noisy randomly selected samples in the k-space.

Our method for φ(t) =
αt

αt+ 1
.
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Cartoon

Observed ℓ1-TV Our method, φ(t) = αt
αt+1
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7. Concluding remarks

• The (local) minimizers of the proposed objectives inherit some features of L1−TV

(e.g. “scale-invariance”) but in a much sharper way.

• In practice, they neatly outperform L1−TV.

• All (local) minimizers are strict.

• Bounded above functions (like f1 and f2) yield much better numerical results than

coercive functions (like f3 and f4).

We do not have a theoretical explanation.

• The regularization parameter β is not involved in the computation of a local

minimizer.

Implicitly, β helps the selection of the subsets Î0 and Ĵ0.

The ordering of the (local) minimizers û of F according to their value F(û) is

determined by β.
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