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1. Problem formulation

image w is stored in a vector in R? data v € RY

Fu) = ||Au—»v|i+8)  ¢(IGjull2)

Jjed

= ) laiw -]+ 8 ¢(IGjull2), B>0,

icl jeJ

def
= {17”'7(]}7

where I
J “ {1,---,r}.

e A is a matrix of any rank with rows a; € R1X?
e (G, are matrices or vectors (e.g. discrete gradient operators)

e ¢ is concave on R,

This family of objective functions has never been considered before
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Plots of the PFs . Note that (f1) an (f2) are bounded above, (f3) and (f4) are coercive.



Motivation

t—(local) minimizer of F

e nonsmooth regularization ng(HGjuHQ) with ¢'(0) > 0 (e.g. TV)

jeJ
= many j such that G;4 =0 [Nikolova 2000, 2004]
e /; data fidelity |[|[Au —vl|;1 = Z |a;u — v[d]]
i€l
= many ¢ such that a;u = v[i] [Nikolova 2002, 2004]
e our F can be seen as an extension of L1-TV [Chan, Esedoglu 2005]

[Chan, Esedoglu, Nikolova 2006]

2. Peculiar Properties of Minimizers




p—1

lllustrations by minimizing F(u) = ||lu — vl||1 + 3 Z e(|ufi + 1] — ulfi]|)
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p(t) = In(at + 1) for a = 2
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Data samples (000), Minimizer samples 4[i] (+4+).
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(c) () =In(at+1), a=2 5 =13
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(d) ()

Data samples (0oo) are corrupted with Gaussian noise. Denoising. Minimizer samples /7]

(+4+). Original (———). S—the largest value so that the gate at 71 remains.
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Constant pieces—solid black line.
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Data points v|i| fitted exactly by the minimizer @ (¢).
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Numerical evidence:

, By, such that

critical values 31, - - -

e 5 € [Bi,Pir1) = the minimizer remains unchanged

= the minimizer is simplified

o B2 Bit1



Main assumptions

G:[G{7 JGZ]T
H1 ker A NkerG = {0} .
H2 ¢ : R, — R in F obeys:

o v:R. =Ry isC2onRY R, \ {0} and o(t) > (0), Vi > 0;

e ©(07) >0 and ¢'(t) >0 on R%.

o ¢ isincreasing on RY, ©"(t) <0, Vt >0 and

7}i\rtl% ©" (t) < 0 is well defined and finite.



Example

Given v # 0, consider the function

au
Flu) = lu—vf+Bp(lu]) for o(u)=7——", VueR

The necessary conditions for F to have a (local) minimum at @ # 0 and 4 # v fail:

’

DF(u) = sign(t — v) + B¢’ (Ja|)sign(a) = 0
u € {0,v} = X

\ D*F(a) = B¢"(la]) < 0

F does have minimizers = @ € {0,v}.
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Main theoretical results

. {aeRP | F(i) = inf ]-"(u)}#@

uERP
e All (local) minimizers of F are strict
o Let &4 € RP be a (local) minimizer of F. Set
Io = {iel : a;a =i}
Jo = {jeJ : Gja=0}
= 1 is the unique solution of the liner system
a;u = vli] Vi€ Io
Giu=0 VjeJp
=
(%) the matrix with rows (ai,‘v’z’ = fo and G;,Vj € fg) has full column rank

(%) is a necessary condition for a (local) minimizer

= “contrast invariance” of (local) minimizers since 4 is linear in v
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Example

|
10

The data vector v is of length 80.

One checks that the minimizer meets

I¢ = (28, 29, 30, 31, 69, 70) and J& = (4, 20, 44, 59) .

The matrix with rows (a,,;,‘v’z' -~ IAO and G;,Vjy € fo) Is of size 149 X 80.
Its rank is 80.
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o Let & € R? be a (local) minimizer of 7. Then

/

i obeying a; 4 = v[i] such that a;[k] # 0
I1<kLp =« or
Jj obeying G;4 =0  such that G;(k) # 0

\

where G, (k) is the k-th column of the linear operator G;

e = each pixel of a (local) minimizer @ of F is involved in (at least) one data
equation that is fitted exactly a;u = v|i], or in (at least) one vanishing operator
|G,ull2 = 0, or in both types of equations.

o If A=1d and G, yield discrete gradients or first-order finite differences between
adjacent samples, a (local) minimizer is composed partly of constant patches, partly
of pixels that fit data samples exactly, remind the figure.
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3. Numerical scheme

Continuation approach

@, € € [0,1] where ¢g(t) =t and 1 = ¢

e (t) = . (t) + a.t where a, = . (07).

we for e € (0, 1] satisfies H2.

Fe(w) = [J[Au—v]i+Bac ) [IGjulla + B¥e(u)

jeJ

where W.(u) = Y (|G ullz) .

jeJ
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For each ¢ fixed—uvariable splitting and penalty decomposition techniques:

Ty (1,0, 2) = [ Au—wl B+ w0l + BT ()t Gu—z[3+Baz 3 |121]2, for 5 — o0

JjeJ
(L) — argminjsﬁ(u(k_l),w(k_l),z(k_l))
Alternate optimization: { w® = argmin 7. ,(u*1 w*=D (k)
\ u®) = argmin 7. - (u, w®, (M)
Then (h—1)
1
w _  Gju LD B -
2 = G a1, maX{HG]u |2 2 00, Vjeld.

(k) Au(k_l) — U
o AuED — o

w

1
maX{HAu(k’_l) — |l — —, O} , Viel.
2y

u'F) solves arg m]iRn {'y||Au —w® |2 4+ 5||Gu — 202 + 5\If€(u)}
uEcRP

where Quasi Newton method with preconditioning is used

= fast algorithm
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MR Image Reconstruction from Highly Undersampled Data

O-filling Fourier |- I5+TV |- |1 +TV Our method

0.2 0.2

-0.15

restored — original -0.15

Reconstructed images from 7% mnoisy randomly selected samples in the k-space.
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MR Image Reconstruction from Highly Undersampled Data

ZLero-filling Fourier recovery H . ||%-|—TV Our method, o(t) = aﬁl

Reconstructed images from 5% noisy randomly selected samples in the k-space.
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Cartoon

NI DEU NI DEEL
NI MAITRE NI MAITRE
NI CROQUETTES NI LROQUETTES
Observed (1-TV Our method, ¢(t) = ;5
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5. Concluding remarks

The (local) minimizers of the proposed objectives inherit some features of L1 —TV
(e.g. “scale-invariance”) but in a much sharper way.

In practice, they neatly outperform L —TV.
All (local) minimizers are strict.

Bounded above functions (like f1 and f2) yield much better numerical results than
coercive functions (like f3 and f4).

We do not have a theoretical explanation.

The regularization parameter 3 is not involved in the computation of a local
minimizer.

Implicitly, 8 helps the selection of the subsets IAO and jo.

The ordering of the (local) minimizers o of F according to their value F(u) is
determined by £.
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Thank you for your attention.

Warmest wishes to Stan!

Thanks to Raymond for the invitation.
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