ℓ_1 Data Fidelity with Concave Regularization: Challenges

Mila Nikolova

CMLA, ENS Cachan, CNRS 61 Av. President Wilson, F-94230 Cachan, France

Joint work with

Michael K. Ng and Chi-Pan Tam — HKBU, Hong Kong

to appear in SIAM J. on Scientific Computing

International Conference on Imaging Science 2012 (In honour of Professor Stanley Osher and his birthday) December 12-14, 2012, Hong Kong 1. Problem formulation

image $oldsymbol{u}$ is stored in a vector in \mathbb{R}^p data $oldsymbol{v} \in \mathbb{R}^q$

$$\begin{split} \mathcal{F}(u) &= \|Au - v\|_1 + \beta \sum_{j \in J} \varphi(\|\mathbf{G}_j u\|_2) \\ &= \sum_{i \in I} |a_i u - v[i]| + \beta \sum_{j \in J} \varphi(\|\mathbf{G}_j u\|_2) , \quad \beta > 0 , \\ I &\stackrel{\text{def}}{=} \{1, \cdots, q\} , \end{split}$$

where

$$I = \{1, \cdots, q\},$$
$$J \stackrel{\text{def}}{=} \{1, \cdots, r\}.$$

- A is a matrix of any rank with rows $a_i \in \mathbb{R}^{1 \times p}$
- G_j are matrices or vectors (e.g. discrete gradient operators)
- φ is concave on \mathbb{R}_+

This family of objective functions has never been considered before

Plots of the PFs φ . Note that (f1) an (f2) are bounded above, (f3) and (f4) are coercive.

Motivation

 \hat{u} —(local) minimizer of \mathcal{F}

• nonsmooth regularization $\sum_{j \in J} \varphi(\|\mathbf{G}_{j}u\|_{2})$ with $\varphi'(0) > 0$ (e.g. TV) \Rightarrow many j such that $\mathbf{G}_{j}\hat{u} = \mathbf{0}$ [Nikolova 2000, 2004] • ℓ_{1} data fidelity $\|Au - v\|_{1} = \sum_{i \in I} |a_{i}u - v[i]|$ \Rightarrow many i such that $a_{i}\hat{u} = v[i]$ [Nikolova 2002, 2004]

• our \mathcal{F} can be seen as an extension of L1-TV [Chan, Esedoglu 2005]

[Chan, Esedoglu, Nikolova 2006]

2. Peculiar Properties of Minimizers

Illustrations by minimizing
$$\mathcal{F}(u) = \|u - v\|_1 + eta \sum_{i=1}^{p-1} arphi(|u[i+1] - u[i]|)$$

(c) $\varphi(t) = \ln(\alpha t + 1)$, $\alpha = 2$, $\beta = 1.3$ (d) $\varphi(t) = (t + 0.1)^{\alpha}$, $\alpha = 0.5$, $\beta = 1.4$ Data samples (000) are corrupted with Gaussian noise. Denoising. Minimizer samples $\hat{u}[i]$ (+++). Original (---). β —the largest value so that the gate at 71 remains.

Constant pieces—solid black line.

Data points v[i] fitted exactly by the minimizer \hat{u} (\blacklozenge).

Numerical evidence:

critical values β_1, \cdots, β_n such that

- $\beta \in [\beta_i, \beta_{i+1}) \Rightarrow$ the minimizer remains unchanged
- $\beta \ge \beta_{i+1} \implies$ the minimizer is simplified

Main assumptions

$$\mathbf{G} = [\mathbf{G}_1^T, \cdots, \mathbf{G}_r^T]^T$$

H1 ker $A \cap \ker G = \{0\}$.

H2 $\varphi : \mathbb{R}_+ \to \mathbb{R}$ in \mathcal{F} obeys:

• $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is \mathcal{C}^2 on $\mathbb{R}^*_+ \stackrel{\text{def}}{=} \mathbb{R}_+ \setminus \{0\}$ and $\varphi(t) > \varphi(0)$, $\forall t > 0$;

•
$$\varphi'(0^+) > 0$$
 and $\varphi'(t) > 0$ on \mathbb{R}^*_+ .

• φ'' is increasing on \mathbb{R}^*_+ , $\varphi''(t) < 0$, $\forall t > 0$ and $\lim_{t \searrow 0} \varphi''(t) < 0$ is well defined and finite.

Example

Given $v \neq 0$, consider the function

$$\mathcal{F}(u) = |u - v| + \beta \varphi(|u|) \text{ for } \varphi(u) = \frac{\alpha u}{1 + \alpha u}, \quad \forall u \in \mathbb{R}$$

The necessary conditions for \mathcal{F} to have a (local) minimum at $\hat{u} \neq 0$ and $\hat{u} \neq v$ fail:

$$\hat{u} \notin \{0, v\} \quad \Rightarrow \quad \begin{cases} D\mathcal{F}(\hat{u}) = \operatorname{sign}(\hat{u} - v) + \beta \varphi'(|\hat{u}|) \operatorname{sign}(\hat{u}) &= 0\\ D^2 \mathcal{F}(\hat{u}) = \beta \varphi''(|\hat{u}|) &< 0 \end{cases}$$

 ${\mathcal F}$ does have minimizers $\ \Rightarrow \ \ \hat{u} \in \{0,v\}$.

Main theoretical results

•
$$\left\{ \hat{u} \in \mathbb{R}^p \mid \mathcal{F}(\hat{u}) = \inf_{u \in \mathbb{R}^p} \mathcal{F}(u) \right\} \neq \emptyset$$

- All (local) minimizers of \mathcal{F} are strict
- Let $\hat{\boldsymbol{u}} \in \mathbb{R}^p$ be a (local) minimizer of \mathcal{F} . Set

$$egin{array}{rcl} \widehat{I}_0 &=& \{i\in I \;:\; a_i \hat{u} = v[i]\} \ \widehat{J}_0 &=& \{j\in J \;:\; {
m G}_j \hat{u} = 0\} \end{array}$$

 \Rightarrow \hat{u} is the unique solution of the liner system

$$egin{cases} a_i u = v[i] & orall i \in \widehat{I}_0 \ G_j u = 0 & orall j \in \widehat{J}_0 \end{cases}$$

 \Rightarrow

(*) the matrix with rows $(a_i, \forall i \in \widehat{I}_0 \text{ and } G_j, \forall j \in \widehat{J}_0)$ has full column rank (*) is a necessary condition for a (local) minimizer

 \Rightarrow "contrast invariance" of (local) minimizers since \hat{u} is linear in v

Example

The data vector v is of length 80.

One checks that the minimizer meets

$$\widehat{I}_0^c = (28\,,\ 29\,,\ 30\,,\ 31\,,\ 69\,,\ 70)$$
 and $\widehat{J}_0^c = (4\,,\ 20\,,\ 44\,,\ 59)$.

The matrix with rows $(a_i, \forall i \in \widehat{I}_0 \text{ and } \mathbf{G}_j, \forall j \in \widehat{J}_0)$ is of size 149×80 . Its rank is 80. • Let $\hat{u} \in \mathbb{R}^p$ be a (local) minimizer of \mathcal{F} . Then

$$1 \leqslant k \leqslant p \Rightarrow \begin{cases} \exists i \text{ obeying } a_i \,\hat{u} = v[i] & \text{such that } a_i[k] \neq 0 \\ & \text{or} \\ \exists j \text{ obeying } G_j \hat{u} = 0 & \text{such that } G_j(k) \neq 0 \end{cases}$$

where $G_j(k)$ is the k-th column of the linear operator G_j

⇒ each pixel of a (local) minimizer û of F is involved in (at least) one data equation that is fitted exactly a_iû = v[i], or in (at least) one vanishing operator ||G_jû||₂ = 0, or in both types of equations.

• If A = Id and G_j yield discrete gradients or first-order finite differences between adjacent samples, a (local) minimizer is composed partly of constant patches, partly of pixels that fit data samples exactly, remind the figure.

3. Numerical scheme

Continuation approach

$$\varphi_{\varepsilon}, \ \varepsilon \in [0,1]$$
 where $\varphi_0(t) = t$ and $\varphi_1 = \varphi$

$$\varphi_{\varepsilon}(t) = \psi_{\varepsilon}(t) + \alpha_{\varepsilon}t$$
 where $\alpha_{\varepsilon} = \varphi_{\varepsilon}'(0^+).$

 φ_{ε} for $\varepsilon \in (0,1]$ satisfies H2.

$$\mathcal{F}_{\varepsilon}(u) = \|Au - v\|_{1} + \beta \alpha_{\varepsilon} \sum_{j \in J} \|\mathbf{G}_{j}u\|_{2} + \beta \Psi_{\varepsilon}(u) ,$$

where $\Psi_{\varepsilon}(u) = \sum_{j \in J} \psi_{\varepsilon}(\|\mathbf{G}_{j}u\|_{2}) .$

For each ε fixed—variable splitting and penalty decomposition techniques:

$$\mathcal{J}_{\varepsilon,\gamma}(u,w,z) = \gamma \|Au - w\|_2^2 + \|w - v\|_1 + \beta \Psi_{\varepsilon}(u) + \gamma \|\mathbf{G}u - z\|_2^2 + \beta \alpha_{\varepsilon} \sum_{j \in J} \|z_j\|_2 , \text{ for } \gamma \to \infty$$

Alternate optimization:
$$\begin{cases} z^{(k)} = \arg \min_{z} \mathcal{J}_{\varepsilon,\gamma}(u^{(k-1)}, w^{(k-1)}, z^{(k-1)}) \\ w^{(k)} = \arg \min_{w} \mathcal{J}_{\varepsilon,\gamma}(u^{(k-1)}, w^{(k-1)}, z^{(k)}) \\ u^{(k)} = \arg \min_{u} \mathcal{J}_{\varepsilon,\gamma}(u, w^{(k)}, z^{(k)}) \end{cases}$$

Then

$$z_j^{(k)} = \frac{\mathbf{G}_j u^{(k-1)}}{\|\mathbf{G}_j u^{(k-1)}\|_2} \max\left\{\|\mathbf{G}_j u^{(k-1)}\|_2 - \frac{\beta \alpha_{\varepsilon}}{2\gamma}, 0\right\}, \quad \forall j \in J.$$

$$\begin{split} w_i^{(k)} &= \frac{Au^{(k-1)} - v}{\|Au^{(k-1)} - v\|_2} \max \left\{ \|Au^{(k-1)} - v\|_2 - \frac{1}{2\gamma}, \ 0 \right\}, \quad \forall i \in I \\ u^{(k)} \text{ solves } \arg \min_{u \in \mathbb{R}^p} \left\{ \gamma \|Au - w^{(k)}\|_2^2 + \gamma \|\mathbf{G}u - z^{(k)}\|_2^2 + \beta \Psi_{\varepsilon}(u) \right\} \\ \text{ where Quasi Newton method with preconditioning is used} \end{split}$$

 \Rightarrow fast algorithm

MR Image Reconstruction from Highly Undersampled Data

Reconstructed images from 7% noisy randomly selected samples in the *k*-space.

MR Image Reconstruction from Highly Undersampled Data

Zero-filling Fourier recovery

 $\|\cdot\|_2^2 + \mathsf{TV}$

Our method, $\varphi(t) = \frac{\alpha t}{\alpha t+1}$

Reconstructed images from 5% noisy randomly selected samples in the *k*-space.

Cartoon

Observed

 $\ell_1\text{-}\mathsf{TV}$

18

5. Concluding remarks

- The (local) minimizers of the proposed objectives inherit some features of L₁-TV (e.g. "scale-invariance") but in a much sharper way.
- In practice, they neatly outperform L_1 -TV.
- All (local) minimizers are strict.
- Bounded above functions (like f1 and f2) yield much better numerical results than coercive functions (like f3 and f4).

We do not have a theoretical explanation.

• The regularization parameter β is not involved in the computation of a local minimizer.

```
Implicitly, \beta helps the selection of the subsets \widehat{I}_0 and \widehat{J}_0.
```

The ordering of the (local) minimizers \hat{u} of \mathcal{F} according to their value $\mathcal{F}(\hat{u})$ is determined by β .

Thank you for your attention.

Warmest wishes to Stan!

Thanks to Raymond for the invitation.