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object uo →
capture

energy
→

sampling

quantization
→ processing


scene

body

earth




reflected

or

emitted




signal

or

image

 data v ↓
output û

Mathematical model: v = Transform(uo) • (Perturbations)

Some transforms: loss of pixels, blur, FT, Radon T., frame T. (· · · )

Processing tasks:

 û = recover(uo)

û = objects of interest(uo)
(· · · )

Mathematical tools: PDEs, Statistics, Functional anal., Matrix anal., (· · · )
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Example due to R.S.Wilson

uo (unknown–signal, picture, density map) v (data, degraded) = Transform(uo)•n (noise)

An ill-posed inverse problem

uo = [ 1 1 1 1 ]T Transform: A =


10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

 rank(A) = 4

• no noise: v = Auo = [ 32 23 33 31 ]T ⇒ û = A−1v = uo

• with noise: v = Auo + n = [ 32.1 22.9 33.1 30.9 ]T

Least-squares solution: û = arg min
u∈R4

{
∥Au − v∥2

}
= A−1v

⇒ û = [ 9.2 − 12.6 4.5 − 1.1 ]T

Tikhonov regularization: û = arg min
u∈R4

Fv(u)

Fv(u)
def
= ∥Au − v∥2 + β

3∑
i=1

(
u[i + 1] − u[i]

)2
β = 1 ⇒ û = [ 1 1.01 1.02 0.98 ]T

1 2 3 4

−10

0

9

1 2 3 4

23

32



4�� ��Image/signal processing tasks often require to solve ill-posed inverse problems

Out-of-focus picture: v = a ∗ uo + noise = Auo + noise

A is ill-conditioned ≡ (nearly) noninvertible

Least-squares solution: û = argmin
u

{
∥Au − v∥2

}
Tikhonov regularization: û := argmin

u

{
∥Au − v∥2+β

∑
i

∥Giu∥2
}
for {Gi} ≈ ∇, β>0

Original uo Blur a Data v û: Least-squares û: Tikhonov
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θ (degrees)

0

2

4

6

8

10

12

Impulse noise Jitter (video) Radon (tomography)

⇓ ⇓ ⇓

Formulate your problem as the minimization (maximization) of a functional

(an energy) whose solution is the sought after signal/image
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Goal of this tutorial: How to choose your energy Fv?

Approach: Salient features of the minimizers of classes of energies Fv

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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1. Energy minimization methods

uo (unknown) v (data) = Transform(uo)• (Perturbations)

solution û

û
↗ close to data production model Ψ(u, v) (data-fidelity)

↘ coherent with priors and desiderata Φ(u) (prior – functional, constraint )

Combining models: û := argmin
u∈Ω

Fv(u) (P)

Fv(u) := Ψ(u, v) + βΦ(u), β > 0

�� ��How to choose (P) to get a good û ?

Applications: Denoising, Segmentation, Deblurring, Tomography, Seismic imaging, Zoom,

Superresolution, Compression, Learning, Motion estimation, Pattern recognition (· · · )

The m× n image u is stored in a p = mn-length vector, u ∈ Rp, data v ∈ Rq
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Ψ usually models the production of data v ⇒ Ψ = − log
(
Likelihood (v|u)

)
v = Auo + n for n white Gaussian noise ⇒ Ψ(u, v) ∝ ∥Au− v∥2

2

The information on u we have is implicitly contained in Ψ. It is scarcely enough.

A good prior Φ is needed to solve our task.

Φ model for the unknown u (statistics, smoothness, edges, textures, expected features)

• Bayesian approach

• Variational approach

Both approaches lead to similar energies

Prior via regularization term Φ(u) =
∑
i

φ(∥Giu∥)

φ : R+ → R+ potential function (PF)

{Gi} — linear operators. Examples : Id, ∇, ∇2, ∇W̃ for W̃ left inverse of a frame if

u = W (image)
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Bayes: U, V random variables, Likelihood fV|U (v|u), Prior fU (u) ∝ exp{−λΦ(u)}

Maximum a Posteriori (MAP) yields the most likely solution û given the data V = v:

û = argmax
u

fU|V (u|v) = argmin
u

(
− ln fV|U (v|u)− ln fU (u)

)
= argmin

u

(
Ψ(u, v) + βΦ(u)

)
= argmin

u
Fv(u)

MAP is a very usual way to combine models on data-acquisition and priors

Realist models for data-acquisition fV|U and prior fU is still an open question

1 50 100

0

20

1 50 100

0

20

Original uo ∼ fU (—) The true MAP û (—)

Data v = uo+noise (· · · ), noise ∼ fV|U The original uo (· · · )

Are you satisfied with the solution?
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• Minimizer approach (the core of our tutorials)

− Analyze the main properties exhibited by the (local) minimizers û of Fv as a function of

the shape of Fv

Strong results.

�� ��Rigorous tools for modelling

− Conceive Fv so that the properties of û satisfy your requirements.

(a “chicken and egg” problem?)

“There is nothing quite as practical as a good theory.” Kurt Lewin
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Illustration: the role of the smoothness of Fv

stair-casing
Fv(u) =

p∑
i=1

(ui − vi)
2 + β

p−1∑
i=1

|ui − ui+1|

smooth non-smooth

exact data-fit
Fv(u) =

p∑
i=1

|ui − vi| + β

p−1∑
i=1

(ui − ui+1)
2

non-smooth smooth

both effects
Fv(u) =

p∑
i=1

|ui − vi| + β

p−1∑
i=1

|ui − ui+1|

non-smooth non-smooth

Data (−−−), Minimizer (—)

Fv(u) =

p∑
i=1

(ui − vi)
2 + β

p−1∑
i=1

(ui − ui+1)
2

smooth smooth

We shall explain why and how to use
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Some energy functions

Regularization [Tikhonov, Arsenin 77]: Fv(u) = ∥Au − v∥2+β∥Gu∥2, G = I or G ≈ ∇

Focus on edges, contours, segmentation, labeling

Statistical framework

Potts model [Potts 52] (ℓ0 semi-norm applied to differences):

Fv(u) = Ψ(u, v) + β
∑
i,j

ϕ(u[i] − u[j]) ϕ(t) :=

 0 if t = 0

1 if t ̸= 0

Line process in Markov random field priors [Geman, Geman 84]: (û, ℓ̂) = argmin
u,ℓ

Fv(u, ℓ)

Fv(u, ℓ) = Ψ(u, v) + β
∑
i

( ∑
j∈Ni

φ(u[i] − u[j])(1 − ℓi,j) +
∑

(k,n)∈Ni,j

V(ℓi,j, ℓk,n)
)

[
ℓi,j = 0 ⇔ no edge

]
,

[
ℓi,j = 1 ⇔ edge between i and j

]
, φ(t) = 1

i
Nitid d ddd

d tid d dd d dd d d
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Image credits: S. Geman and D. Geman 1984. Restoration with 5 labels using Gibbs sampler

“We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and

orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an

energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov

random field (MRF) equivalence, this assignment also determines an MRF image model.” [S. Geman, D. Geman 84]
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PDE’s framework Φ(u)

M.-S. functional [Mumford, Shah 89]: Fv(u, L)=

∫
Ω

(u − v)2dx +β

(∫
Ω \L
∥∇u∥2dx+α |L |

)
discrete version: Φ(u) =

∑
i

φ(∥Giu∥), φ(t) = min{t2, α}, {Gi} ≈ ∇

Total Variation (TV) [Rudin, Osher, Fatemi 92]: Fv(u) = ∥u − v∥2
2 + β TV(u)

TV(u) =

∫
∥∇u∥2 dx ≈

∑
i

∥Giu∥2

t

φ(t)
Various edge-preserving functions φ to define Φ

φ is edge-preserving if lim
t→∞

φ′(t)

t
= 0

[Charbonnier, Blanc-Féraud, Aubert, Barlaud 97 ...]

Minimizer approach

ℓ1− Data fidelity [Nikolova 02]: Fv(u) = ∥Au − v∥1 + βΦ(u)

L1 − TV model [T. Chan, Esedoglu 05]: Fv(u) = ∥u − v∥1 + βTV(u)

CPU time ! Computers ↑↑
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Original uo Data v = a ∗ uo + n φ(t) = |t|α∈(1,2) φ(t) = |t|

Row 54 Row 54

Row 90 Row 90

φ

c

o

n

v

e

xFv(u) = ∥Au − v∥2 + β
∑
i φ((∇u)[i])

φ smooth at 0 φ nonsmooth at 0

φ(t) = αt2/(1 + αt2) φ(t) = α|t|/(1 + α|t|)

Row 54 Row 54

Row 90 Row 90

φ(t) = min{αt2, 1} φ(t) = 1− 1l(t=0)

Row 54 Row 54

Row 90 Row 90

n

o

n

c

o

n

v

e

x
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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2 Regularity Results

Optimization problems

u

Fv(u)

two local
minimizers

u

Fv(u)

No minimizer

u

Ω

Fv nonconvex Fv convex non coercive Ω = R Fv convex non coercive Ω compact

u

Fv(u)

Ω Ω

u

Fv(u)

minimizers

u

Fv strictly convex, Ω nonconvex Fv non strictly convex Fv strictly convex on R
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Fv : Ω → R Ω ⊂ Rp

• Set of optimal solutions Û = {û ∈ Ω : Fv(û) 6 Fv(u) ∀ u ∈ Ω}

Û = {u} if Fv strictly convex

Û ̸= ∅ if Fv coercive of if Fv continuous and Ω compact

Otherwise – check

(e.g. see if Fv is asymptotically level stable [Auslender, Teboulle 03])

• Nonconvex problems:

Algorithms may get trapped in local minima

A “good” local minimizer can be satisfying

Global optimization – difficult, but progress, e.g. [Robini, Reissman JGO 13]

Convex relaxation methods, see, e.g., [Yuan, Bae, Tai CVPR 10]

• Attention to numerical errors
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Definition: U : O → Rp, O ⊂ Rq open, is a (local) minimizer function for

FO := {Fv : v ∈ O} if Fv has a strict (local) minimum at U(v), ∀ v ∈ O

Minimizer functions – an useful tool to analyze the properties of minimizers...

Fv(u)

u0

Fv(u)

u

Fv(u)

u

Fv(u) = (u− v)2 + β
√
α+ u2 Fv(u) = (u− v)2 + β αu2

1+αu2 Fv(u) = (u− v)2 + β
α|u|

1+α|u|

minimizer function (••••) local minimizer functions (••••) global minimizer function (••••)

Each blue curve curve: u → Fv(u) for v ∈ {0, 2, · · · }

Question 1 What these plots reveal about the local / global minimizer functions?
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Fv(u) = ∥Au− v∥2
2 + βΦ(u)

Φ(u) =
∑
i

φ(∥Giu∥2)

u ∈ Rp

v ∈ Rq


φ : R+ → R

φ incresing, continuous

φ(t) > φ(0), ∀t > 0

{Gi} linear operators Rp → Rs, s > 1

φ′(0+) > 0 ⇒ Φ is nonsmooth on
∪
i

{
u : Giu = 0

}

Systematically: kerA ∩ kerG = {0} G :=


G1

G2

· · ·


Recall:

Fv has a (local) minimum at û ⇒ δFv(û)(d) = lim
t↓0

Fv(u+td)−Fv(u)

t
> 0, ∀d ∈ Rp

Fv nonconvex ⇒ there may be many local minima



21

• N = {(s, t) : t = ± arctan(s)}

• N is closed in R2 and its Lebesgue measure in R2 is L2(N) = 0

• (x, y) = random R2

Question 2 What is the chance that (x, y) ∈ N?
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Stability of the minimizers of Fv [Durand & Nikolova 06]

Assumptions: φ : R+ → R is continuous and Cm>2 on R+ \ {θ1, · · · θn},
Assumptions: edge-preserving, possibly non-convex and rank(A) = p

A. Local minimizers

(knowing local minimizers is important)

There is a closed N ⊂ Rq with Lebesgue measure Lq(N) = 0 such that ∀v ∈ Rq \N ,

every (local) minimizer û of Fv is given by û = U(v) where U is a Cm−1 (local) minimizer

function.

Question 3 For v ∈ Rq \N, compare U(v) and U(v + ε) where ε ∈ Rq is small enough.

B. Global minimizers

• ∃ N̂ ⊂ Rq with Lq(N̂) = 0 and Int(Rq \ N̂) dense in Rq such that ∀v ∈ Rq \ N̂ , Fv

has a unique global minimizer.

• There is an open subset of Rq \ N̂ , dense in Rq, where the global minimizer function Û
is Cm−1-continuous.

Question 4 What is the chance that v ∈ N̂? What can happen if v ∈ N̂?
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Nonasymptotic bounds on minimizers [Nikolova 07]

Classical bounds for β ↘ 0 or β ↗ ∞

Assumption: φ is piecewise C1

• φ is strictly increasing or rank(A) = p

û is a (local) minimizer of Fv ⇒ ∥Aû∥ 6 ∥v∥

• ∥φ′∥∞ = constant (φ is edge-preserving) and rank(A) = q 6 p

û is a (local) minimizer of Fv ⇒ ∥v −Aû∥∞ 6 β
2
∥φ′∥∞ ∥(AA∗)−1A∥∞ ∥G∥1

∥φ′∥∞ = 1, A = Id and G− 1st order differences:

 signal ⇒ ∥v − û∥∞ 6 β

image ⇒ ∥v − û∥∞ 6 2β

Question 5 If v = uo + n for n Gaussian noise, is it possible to clean v

from this noise by minimizing Fv? (See Ψ on p. 8.)
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Non-Smooth Energies, Side Derivatives, Subdifferential

Rademacher’s theorem: If Fv : Rp → R is Lipschitz continuous, then Fv is differentiable (in

the usual sense) almost everywhere in Rp.

A kink is a point u where ∇Fv(u) is not defined (in the usual sense).

Example: Fv(u) =
1

2
(u− v)2 + β|u| for β = 1 > 0 and u, v ∈ R

−1 0 1

1

−1 0 1

1

−1 0 1

1

−1 0 1

v = −0.9 v = −0.2 v = 0.95 v = 1.1

−1 0 1

0

−1 0 1

0

−1 0 1

0

−1 0 1

0

û =


v + β if v < −β

0 if |v| 6 β

v − β if v > β

Question 6 Comment the minimizers on the 1st row. What is drawn on the 2nd row?
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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3 Minimizers under Non-Smooth Regularization

�
�

�

Fv(u)=Ψ(u, v)+β

r∑
i=1

φ(∥Giu∥), Ψ∈Cm>2, φ∈Cm(R∗
+), 0<φ

′(0+)6∞

φ(t) tα, α∈(0, 1)
α t

α t + 1
ln(αt + 1) 1 − αt α ∈ (0, 1) (· · · ) , α > 0

0 10

3

t

φ

α = 0.6

0 10

1

t

α = 4

0 10

2

t

φ

α = 2

0 10

1

t

φ

α = 0.5

0 10

in
f

φ′

0 10

4

φ′

0 10

2

φ′

0 10

0.7

φ′

φ(t) = t and Giu ≈ (∇u)i ⇒ Φ(u) = TV(u) (total variation) [Rudin, Osher, Fatemi 92]
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General case Fv(u)=Ψ(u, v)+β
r∑

i=1

φ(∥Giu∥) Ψ∈Cm>2, φ′(0+)>0 [Nikolova 97,00]

Let û be a (local) minimizer of Fv. Set ĥ := {i : Giû = 0}
Then ∃ O ⊂ Rq open, ∃ U ∈ Cm−1 (local) minimizer function so that

v′ ∈ O, û′ = U(v′) ⇒ Giû
′ = 0, ∀ i ∈ ĥ

ĥ ⊂ {1, .., r} Oĥ := {v ∈ Rq : GiU(v) = 0, ∀i ∈ ĥ} ⇒ Lq(Oĥ) > 0�



�
	Data v yield (local) minimizers û of Fv such that

Giû = 0 for a set of indexes ĥ

Gi = ∇i ⇒ û[i] = û[j] for many neighbors (i, j) (the “stair-casing” effect)

Giu = u[i] ⇒ many samples û[i] = 0 – highly used in Compressed Sensing

Question 7 What happens if {Gi} yield second-order differences?

Property fails if Fv is smooth, except for v ∈ N where N is closed and Lq(N) = 0.
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1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) =
√
α+ t2, φ′(0) = 0 (smooth at 0) φ(t) = (t+ αsign(t))2, φ′(0+) = 2α

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) = |t|, φ′(0+) = 1 φ(t) = α|t|/(1 + α|t|), φ′(0+) = α

Fv(u) = ∥u− v∥2

+β
∑

φ(|u[i]− u[i− 1]|)
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TV energy: Fv(u) = ∥Au− v∥2 + βTV(u)

Original Data Restored: TV energy

Image credit to the authors: D. C. Dobson and F. Santosa, “Recovery of blocky images

from noisy and blurred data”, SIAM J. Appl. Math., 56 (1996), pp. 1181-1199.
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Questions to clarify the main property

Let uo ∈ R and pdf(uo) =
1
2e

−|uo| (Laplacian distribution)

Question 8 Give Pr(uo = 0).

Let v = uo + n where pdf(n) = 1
σ
√
2π
e−

n2

2σ2 (centered Gaussian distribution)

The corresponding MAP energy to recover uo from v reads as

Fv(u) =
1

2
(u− v)2 + β|u| for β =

1

σ2

Question 9 Give the minimizer function U for Fv.

Useful reminder on p. 24.

Question 10 Determine the set {ν ∈ R : U(ν) = 0}. Comment the result.



31

Disparity estimation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Left input image (b) Right input image (c) True disparity

Figure 7. Rectified stereo image pair and the ground truth disparity. Light gray pixels indicate structures

near to the camera, and black pixels correspond to unknown disparity values.

−2 0 2 −2 0 2 −2 0 2 −2 0 2

quadratic TV Huber Lipscitz

Image credits to the authors: Pock, Cremers, Bischof, and Chambolle “Global Solutions of

Variational Models with Convex Regularization”, SIIMS 3(4) 2010, pp. 1122-1145
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Minimization of Fv(u) = ∥u− v∥22 + βTV(u), β = 100 and β = 180
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Questions relevant to the Potts model (see p. 12)

Here φ(t) =

 0 if t = 0

1 if t ̸= 0

Question 11 Compute the global minimizer of Fv(u) = (u− v)2 + βφ(u) for u, v ∈ R

and β > 0, according to the value of v.

Consider Fv(u) = ∥u− v∥2
2 + β

p∑
i=1

φ(u[i]) for β > 0 and u, v ∈ Rp.

Note:

p∑
i=1

φ(u[i]) = #{i : u[i] ̸= 0} = ℓ0(u) is the counting norm.

The global minimizer function U : Rp → Rp for Fv has p components which depend on v.

Question 12 Compute each component Ui

Question 13 Let h ⊂ {1, · · · , p}. Determine the subset Oh ⊂ Rp such that

if v ∈ Oh then the global minimizer û of Fv satisfies û[i] = 0, ∀ i ∈ h

and û[i] ̸= 0 if i ̸∈ h.
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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4 Minimizers relevant to non-smooth data-fidelity

General case [Nikolova 02]�
�

�

Fv(u)=

∑
i

ψ(|aiu− v[i]|) + βΦ(u), ai=Arow i,Φ∈Cm, ψ∈Cm(R∗
+ ), ψ′(0+) > 0

Let û be a (local) minimizer of Fv. Set ĥ =: {i : aiû = v[i]}.
Then ∃ O ⊂ Rq open, ∃ U ∈ Cm−1 (local) minimizer function so that

v′ ∈ O, û′ = U(v′) ⇒ ai û
′ = v[i], ∀ i ∈ ĥ

ĥ ⊂ {1, .., q} Oĥ :=
{
v ∈ Rq : ai U(v) = vi,∀i ∈ ĥ

}
⇒ Lq(Oĥ) > 0�

�
�



(Local) minimizers û of Fv achieve an exact fit to (noisy) data

aiû = v[i] for a certain number of indexes i

Property fails if F is fully smooth, except for v ∈ N where N is closed and Lq(N) = 0.
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Question 14 Suggest cases when you would like that your minimizer obeys this property.

Question 15 Compute the minimizer of Fv(u) = |u− v|+ βu2 for u, v ∈ R and β > 0.

Question 16 Can you find a relationship between the properties of the minimizer

when φ′(0+) > 0 (chapter 3, p. 26) and when ψ′(0+) > 0 (chapter 4, p. 35)
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Original uo Data v = uo+outliers

Restoration û for β = 0.14 Residuals v − û

Fv(u) =
∑
i

|u[i] − v[i]| + β
∑
j∈Ni

|u[i] − u[j]|1.1
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Restoration û for β = 0.25 Residuals v − û

Fv(u) =
∑
i

∣∣u[i] − v[i]
∣∣ + β

∑
j∈Ni

|u[i] − u[j]|1.1

Restoration û for β = 0.2 Residuals v − û

TV-like energy: Fv(u) =
∑
i

(u[i] − v[i])2 + β
∑
j∈Ni

|u[i] − u[j]|
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Detection and cleaning of outliers using ℓ1 data-fidelity [Nikolova 04]

Fv(u) =

p∑
i=1

|u[i] − v[i]| +
β

2

p∑
i=1

∑
j∈Ni

φ(|u[i] − u[j]|) tid d dNid d d
d d d

dd
d
dd
db b bbb
b

φ: smooth, convex, edge-preserving

Assumptions:

 data v contain uncorrupted samples v[i]

v[i] is outlier if |v[i] − v[j]| ≫ 0, ∀j ∈ Ni

v ∈ Rp ⇒ û = argmin
u

Fv(u)

ĥ = {i : û[i] = v[i]}

 v[i] is regular if i ∈ ĥ

v[i] is outlier if i ∈ ĥc

�
�

�
�

Outlier detector: v → ĥc(v) = {i : û[i] ̸= v[i]}
Smoothing: û[i] for i ∈ ĥc = estimate of the outlier

Justification based on the properties of û
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L. Bar, A. Brook, N. Sochen and N. Kiryati,

“Deblurring of Color Images Corrupted by Impulsive Noise”,

IEEE Trans. on Image Processing, 2007

Fv(u) = ∥Au− v∥1 + βΦ(u)

blurred, noisy (r.-v.) zoom - restored
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Recovery of frame coefficients using ℓ1 data-fitting [Durand, Nikolova 07]

• Data: v = uo + noise

• Frame coefficients: y = Wv = Wuo+ noise W̃ =left inverse of W

• Hard thresholding yT [i] :=

 0 if |y[i]| 6 T

y[i] if |y[i]| > T

keeps relevant information if T small

• ũ = W̃yT — Gibbs oscillations and wavelet-shaped artifacts

• Hybrid energy methods—combine fitting to yT with prior Φ(u)

[Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...
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Desiderata: Fy convex and

Keep x̂[i] = yT [i] Restore x̂[i] ̸= yT [i]

significant coefs: y[i] ≈ (Wuo)[i] outliers: |y[i]| ≫ |(Wuo)[i]| (frame-shaped artifacts)

thresholded coefs: (Wuo)[i]≈0 edge coefs: |(Wuo)[i]|> |yT [i]|=0 (“Gibbs” oscillations)

Then:
minimize Fy(x) =

∑
i

λi

∣∣(x− yT )[i]
∣∣+ ∫

Ω

φ(|∇W̃x|) ⇒ x̂

û = W̃ x̂ for W̃ left inverse, φ edge-preserving

Question 17 Explain why the minimizers of Fy fulfill the desiderata.

Hint: “good” coefficients fitted exactly, “bad” coefficients corrected according to the prior.
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1 250 500

0

100

1 250 500

0

100

1 250 500

0

100

Original and data Sure-shrink method Hard thresholding

1 250 500

0

100

1 250 500

0

100

410 425

23

50

◦ original
× threshold
∗ restored

Total variation The proposed method Magnitude of coefficients

Restored signal (—), original signal (- -).
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Fast 2-stage restoration under impulse noise [R.Chan, Nikolova et al. 04,05,08]

1. Approximate the outlier-detection stage by rank-order filter

(e.g. adaptive or center-weighted median)

Corrupted pixels ĥc =
{
i : v̂[i] ̸= v[i]

}
where v̂=Rank-Order Filter (v)

⇒ improve speed and accuracy

2. Restore û (denoise, deblur) using an edge-preserving energy method

subject to aiû = v[i] for all i ∈ ĥ
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50% RV noise ACWMF DPVM Our method

70 % SP noise(6.7dB) Adapt.med.(25.8dB) Our method(29.3dB) Original Lena
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One-step real-time dejittering of digital video [Nikolova 09]

• Image u ∈ Rm×n, rows ui, its pixels ui[j]

• Data vi[j] = ui[j + di], di integer,
∣∣di∣∣ 6 M , typically M 6 20.

• Restore û ≡ restore d̂i, 1 6 i 6 m

original jittered

Original (b) One column Jittered

(b) The same column in the original (left) and in the jittered (right) image

The gray-values of the columns of natural images can be seen as large pieces of 2nd (or 3rd)

order polynomials which is false for their jittered versions.
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Each column ûi is restored using d̂i = arg min
|di|6N

F(di)

F(di) =

c−N∑
j=N+1

∣∣vi[j + di] − 2ûi−1[j] + ûi−2[j]
∣∣α, α ∈ {0.5, 1}, N > M

Question 18 Explain why the minimizers of F can solve the problem as stated.

Question 19 What changes if α = 1 or if α = 0.5?

Question 20 Is it easy to solve the numerical problem?

A Monte-Carlo experiment shows that in almost all cases, α = 0.5 is better.

Jittered, [−20, 20] α = 1 Jitter: 6 sin
(
n
4

)
α=1 ≡ Original
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original

restored

Jittered {−8, . . . , 8} Original image α = 1 Zooms

(512×512)JitterM=6 α∈{1, 1
2
}=Original Lena (256× 256) Jitter {−6, .., 6} α∈{1, 1

2
}
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Jitter {-15,..,15} α = 1, α = 0.5 Original image
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Jitter Jittered Image Bayesian TV Bake & Shake

Original Our: α=0.5 Our: Error uo − û

[Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]
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5. Comparison with Fully Smooth Energies

Fv(u) = Ψ(u, v) + βΦ(u), F ∈ Cm>2 + easy assumptions. If h ̸= ∅ ⇒

{v ∈ Rq : Fv—minimum at û, Giû = 0, ∀i ∈ h}
{v ∈ Rq : Fv—minimum at û, ai û = vi, ∀i ∈ h}

closed and

negligible in Rq

�
�

�



For Fv smooth, the chance that noisy data v yield a minimizer û of Fv which

for some i satisfies exactly Giû = 0 or ai û = vi is negligible

Nearly all v ∈ Rq lead to û = U(v) satisfying Giû ̸= 0, ∀i and ai û ̸= vi, ∀i

Question 21 What are the consequences if one approximates a nonsmooth energy

by a smooth energy?
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Questions to clarify the theoretical results

Let u ∈ Rp and v ∈ Rq.

Consider that A ∈ Rq×p and G ∈ Rr×p satisfy ker(A) ∩ ker(G) = {0}.

Fv(u) = ∥Au− v∥22 + β∥Gu∥22 for β > 0

Question 22 Calculate ∇Fv(u).

Question 23 Determine the minimizer function U .

Let Gi ∈ R1×p denote the ith row of G.

Question 24 Characterize the set K = {ν ∈ Rp : Gi U(ν) = 0}.

Let ai ∈ R1×p denote the ith row of A.

Question 25 Characterize the set L = {ν ∈ Rp : ai U(ν) = ν[i]}.
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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6 Nonconvex Regularization: Why Edges are Sharp? [Nikolova 04, 10]�
�

�

Fv(u) = ∥Au− v∥2 + β

∑
i∈J

φ(∥Giu∥) J = {1, · · · , r}

Standard assumptions on φ: C2 on R+ and lim
t→∞

φ′′(t) = 0, as well as:

φ′(0) = 0 (Φ is smooth) φ′(0+) > 0 (Φ is nonsmooth)

0 1

1

φ(t)=
αt2

1 + αt2

0 1

0

τ T
<0

>0

increase, 60

φ′′(t)

0 1
0

1

φ(t) =
αt

1 + αt

0 1

0

increase, 60

<0

φ′′(t)
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Illustration on R Fv(u) = (u− v)2 + βφ(|u|), u, v ∈ R

ξ0

ξ1

v

u
θ0 θ1

u+ β
2
φ′(u)

φ′(0) = 0

ξ0

ξ1

v

u

θ0 θ1

u+ β
2
φ′(u)

φ′(0) > 0

No local minimizer in (θ0,θ1)

∃ ξ0 > 0, ∃ ξ1 > ξ0

|v| 6 ξ1 ⇒ |û0| 6 θ0
strong smoothing

|v| > ξ0 ⇒ |û1| > θ1

loose smoothing

∃ ξ ∈ (ξ0, ξ1)
|v| 6 ξ ⇒ global minimizer = û0 (strong smoothing)

|v| > ξ ⇒ global minimizer = û1 (loose smoothing)

For v = ξ the global minimizer jumps from û0 to û1 ≡ decision for an “edge”

Since [Geman21984] various nonconvex Φ to produce minimizers with smooth regions and

sharp edges
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Sharp edge property

There exist θ0 > 0 and θ1 > θ0 such that any (local) minimizer û of Fv satisfies

either ∥Giû∥ 6 θ0 or ∥Giû∥ > θ1 ∀ i ∈ J�
�

�
�

ĥ0 =
{
i : ∥Giû∥ 6 θ0

}
homogeneous regions

ĥ1 =
{
i : ∥Giû∥ > θ1

}
edges

When β increases, then θ0 decreases and θ1 increases.

In particular

φ′(0+) > 0 ⇒ θ0 = 0 fully segmented image (Giû = 0, ∀i ∈ ĥ0)

Question 26 Explain the prior model involved in Fv when φ is nonconvex

with φ′(0) = 0 and with φ′(0+) > 0.
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Image Reconstruction in Emission Tomography

0

1

2

3

4

Original phantom Emission tomography simulated data

0

1

2

3

4

0

1

2

3

4

φ is smooth (Huber function) φ(t) = t/(α+ t) (non-smooth, non-convex)

Reconstructions using Fv(u) = Ψ(u, v) + β
∑
j∈Ni

φ(|u[i]− u[j]|), Ψ = smooth, convex
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Selection for the global minimizer

Additional assumptions: ∥φ∥∞ <∞, {Gi}—1st-order differences, A∗A invertible

1lΣi =

 1 if i ∈ Σ ⊂ {1, .., p}

0 else

Original: uo = ξ1lΣ, ξ > 0

Data: v = ξ A 1lΣ = Auo

û = global minimizer of Fv

Sketch of the results

∃ ξ1 > 0 such that ξ > ξ1 ⇒ û—perfect edges

Moreover:

• Φ non smooth, then ξ > ξ1 ⇒ û = c uo, c < 1, lim
ξ→∞

c=1

• φ(t) = η, t > η, then ξ > ξ1 ⇒ û = uo

This holds true also for φ(t) = min{αt2, 1} and for φ(t) =

 0 if t = 0

1 if t ̸= 0
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Comparison with Convex Edge-Preserving Regularization

1 100

0

4

1 100

0

4

1 100

0

4

Data v = uo + n φ(t) = |t| φ(t) = α|t|/(1 + α|t|)

original data φ(t) = |t|1.4 φ(t) = min{αt2, 1}

Question 27 Why edges are sharper when φ is nonconvex?
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Fv(u)

u

v=0v=22

0 θ1

v=0v=22

uθ0 θ1

Fv(u)

u

Fv(u) = (u− v)2 + β
α|u|

(1+α|u|) Fv(u) = (u− v)2 + β αu2

(1+αu2)
Fv(u) = (u− v)2 + β

√
α+ u2

global function (••••) global minimizer functions (••••) unique minimizer function (••••)

Each blue curve curve: u → Fv(u) for v ∈ {0, 2, · · · }

Question 28 How to describe the global minimizer when v increases?
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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7. Nonsmooth data-fidelity and regularization

Consequence of §3 and §4: if Φ and Ψ non-smooth,

 Giû = 0 for i ∈ ĥφ ̸= ∅

aiû = v[i] for i ∈ ĥψ ̸= ∅

The L1-TV energy

T. F. Chan and S. Esedoglu, “Aspects of Total Variation Regularized L1 Function

Approximation”, SIAM J. on Applied Mathematics, 2005

Fv(u) = ∥u− 1lΩ∥1 + β

∫
Rd

∥∇u(x)∥2 dx where 1lΩ(x) :=

 1 if x ∈ Ω

0 else

• ∃ û = 1lΣ (Ω convex ⇒ Σ ⊂ Ω and û unique for almost every β > 0)

• contrast invariance: if û minimizes for v = 1lΩ then cû minimizes Fcv

the contrast of image features is more important than their shapes

• critical values β∗

 β < β∗ ⇒ objects in û with good contrast

β > β∗ ⇒ they suddenly disappear

⇒ data-driven scale selection
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Binary images by L1 − TV [T. Chan, S. Esedoglu, Nikolova 06]

Classical approach to find a binary image û = 1lΣ̂ from binary data 1lΩ, Ω ⊂ R2

Σ̂ = argmin
Σ

{∥∥1lΣ − 1lΩ∥22 + βTV(1lΣ)
}

nonconvex problem (⋆)

usual techniques (curve evolution, level-sets) fail

Σ̂ solves (⋆) ⇔ û = 1lΣ̂ minimizes
∥∥u− 1lΩ∥1 + β TV(u) (convex)

Data Restored
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Multiplicative noise removal on Frame coefficients [Durand, Fadili, Nikolova 09]

Multiplicative noise arises in various active imaging systems e.g. synthetic aperture radar

• Original image: So

• One shot: Σk = Soηk

• Data: Σ =
1

K

K∑
k=1

Σk = So
1

K

K∑
k=1

ηk = So η where pdf(η) = Gamma density

• Log-data: v = logΣ = log So + log η = u0 + n

• Frame Coefficients: y = Wv = Wu0 +Wn (W curvelets)

0 5 −6 0 2 −1 0 1 1 2 −1 0 1 −1 0 1

K=1

η = η1

K=1 K=1 K=10 K=10 K=10

pdf(η) = pdf(ηk) pdf(n) pdf
(
Wn

)
pdf(η) pdf(n) pdf

(
Wn

)
Question 29 Comment the noise distribution of Wn
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• Hard Thresholding: yT [i] =

{
0 if |y[i]| 6 T,

y[i] otherwise
∀i ∈ I, T > 0 (suboptimal).

I1 = {i ∈ I : |y[i]| > T} and I0 = I \ I1

• Restored coefficients: x̂ = argmin
x

Fy(x) (ℓ1 − TV energy)

Fy(x) = λ0

∑
i∈I0

∣∣x[i]∣∣ + λ1

∑
i∈I1

∣∣x[i] − y[i]
∣∣ + ∥W̃x∥TV

Ŝ = B exp
(
W̃ x̂

)
, where W̃ left inverse, B bias correction

Question 30 Explain the job the minimizer x̂ of Fy should do.

Some comparisons

• BS [Chesneau,Fadili,Starck 08]: Block-Stein thresholds the curvelet coefficients, ≈
minimax(large class of images with additive noises), optimal threshold T = 4.50524

• AA [Aubert,Aujol 08]: Ψ = − Log-Likelihood(Σ), Φ = TV(Σ) (i.e. Fv ≡ MAP for Σ)

• SO [Shi,Osher 08]: relaxed inverse scale-space for Fv(u) = ∥v − u∥22 + βTV(u) ≈ MAP(u)

Stopping rule: k∗ = max{k ∈ IN : Var(u(k) − uo) > Var(n)}.

Monte-Carlo comparative experiment confirms the proposed method
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Noisy Fields K = 1 (512×512) SO: PSNR=9.59, MAE=196 AA: PSNR=15.74, MAE=76.66

BS: PSNR=22.52, MAE=35.22 Fields (original) Our: PSNR=22.89, MAE=33.67
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Noisy K = 10 SO: PSNR=25.36, MAE=25.14 AA: PSNR=17.13, MAE=65.40

BS: PSNR=27.24, MAE=19.61 Fields (original) Our: PSNR=28.04, MAE=18.19
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Noisy City K = 1 (512×512) SO: PSNR=18.39, MAE=24.08 AA: PSNR=22.18, MAE=13.71

BS: PSNR=22.25, MAE=13.96 City (original) Our: PSNR=22.64, MAE=13.39



69

Noisy K = 4 SO: PSNR=24.40, MAE=10.76 AA: PSNR=24.55, MAE=10.06

BS: PSNR=24.92, MAE=9.87 City (original) Our: PSNR=25.84, MAE=9.09
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C. Clason, B. Jin, K. Kunisch

“Duality-based splitting for fast ℓ1 − TV image restoration”, 2012,

http://math.uni-graz.at/optcon/projects/clason3/

Scanning transmission electron microscopy (2048× 2048 image)

true image noisy image restoration
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ℓ1 data-fidelity with concave regularization [Nikolova, Ng, Tam 12]�
�

�
�

Fv(u) =
∑
i∈I

∣∣aiu− v[i]
∣∣ + β

∑
j∈J

φ(∥Gju∥2), φ′(0+) > 0, φ′′(t) < 0, ∀t > 0

I = {1, · · · , q} , J = {1, · · · , r}

φ is strictly concave on [0,+∞).

φ(t)
α t

α t + 1
1 − αt, α∈(0, 1) ln(αt + 1) (t + ε)α, α∈(0, 1), ε>0 (· · · )

0 10

1

t

α = 4

0 10

1

t

φ

α = 0.5

0 10

2

t

φ

α = 2

0 10

2

t

φ

α = 0.3
ε = 0.02

Motivation

• This family of objective functions has never been considered before

• Fv can be seen as an extension of L1− TV

• û—(local) minimizer of Fv
?

=⇒ many i, j such that aiû = v[i] and Gjû = 0
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Minimizers of Fv(u) = ∥u − v∥1 + β

p−1∑
i=1

φ(|u[i + 1] − u[i]|)

φ(t) = αt
αt+1

for α = 4 φ(t) = ln(αt + 1) for α = 2

71

0

10

71

0

5

β ∈ {78, · · · , 156} β ∈ 0.1 × {10, · · · , 14}

71

0

10

71

0

5

β ∈ {157, · · · , 400} β ∈ 0.1 × {16, · · · , 30}
Data samples (◦◦◦), Minimizer samples û[i] (+++).
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5 20 53 71

0

10

5 20 53 71

0

10

(a) φ(t) = α t
α t+1 , α = 4, β = 3 (b) φ(t) = 1− αt, α = 0.1, β = 2.5

5 20 53 71

0

10

5 20 53 71

0

10

(c) φ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) φ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Denoising: Data samples (◦◦◦) are corrupted with Gaussian noise. Minimizer samples

û[i] (+++). Original (−−−). β—the largest value so that the gate at 71 survives.
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Zooms

0

10

53 71

(a) (b) (c) (d)

5 20

12

11

12.5

Constant pieces—solid black line.

Data points v[i] fitted exactly by the minimizer û (�).
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5 20 53 71

0

10

5 20 53 71

0

10

φ(t) = t, β = 0.8 (ℓ1 − TV) the minimizer for φ(t) = α t
α t+1

, α = 4, β = 3

the convex relaxation of Fv closest to (ℓ1 − TV)

0

10

5 20 53 71

0

10

error for φ(t) = α t
α t+1

, α = 4, β = 3 φ(t) = α t
α t+1 , α = 4, β = 3

∥original− û∥∞ = 0.24 original ∈ [0, 12], data v ∈ [−0.6, 12.9]
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On the figures, û are global minimizers of Fv (Viterbi algorithm)

Question 31 Can you sketch the main properties of the minimizers of Fv?

Question 32 What seems being the role of the asymptotic of φ?

Numerical evidence:

critical values β1, · · · , βn such that

• β ∈ [βi, βi+1) ⇒ the minimizer remains unchanged

• β > βi+1 ⇒ the minimizer is simplified

Result proven (under conditions) for the minimizers of L1 − TV in [Chan, Esedoglu 2005]
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Given v ∈ R consider the function

Fv(u) = |u− v|+ βφ(|u|) for φ(u) =
αu

1 + αu
u ∈ R, β > 0

Question 33 Does Fv have a global minimizer for any v? Explain.

Question 34 Determine φ′′(u) for u ∈ R \ {0}.

Question 35 Show that ∀ v ∈ R, any minimizer û of Fv obeys û ∈ {0, v}.

Question 36 Can you extend this result to the other φ on p. 71?
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• Fv does have global minimizers, for any {ai}, for any v and for any β > 0.

• Let û be a (local) minimizer of Fv. Set

Î0 = {i ∈ I : aiû = v[i]}
Ĵ0 = {j ∈ J : Gjû = 0}

û is the unique point solving the liner system aiû = v[i] ∀i ∈ Î0

Gjû = 0 ∀j ∈ Ĵ0

�
�

�
�

Each pixel of a (local) minimizer û of Fv is involved in (at least)

one equation aiû = v[i], or in (at least) one equation Gjû = 0,

or in both types of equations.

• “Contrast invariance” of (local) minimizers

• The matrix with rows
(
ai, ∀i ∈ Î0, Gj,∀j ∈ Ĵ0

)
has full column rank

• All (local) minimizers of Fv are strict
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method

−0.15

0

0.2

−0.15

0

0.2

−0.15

0

0.2

Reconstructed images from 7% noisy randomly selected samples in the k-space.

Our method for φ(t) =
αt

αt+ 1
.
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV Our method

−0.06

0

0.08

−0.06

0

0.08

−0.06

0

0.08

Reconstructed images from 5% noisy randomly selected samples in the k-space.

Our method for φ(t) =
αt

αt+ 1
.
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Cartoon

Observed ℓ1-TV Our method, φ(t) = αt
αt+1
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual

9. Inverse modeling and Bayesian MAP – there is distortion (p. 98)

10. Some References (p. 103)
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8. Fully smoothed ℓ1 − TV�

�

�

�
Fv(u) = Ψ(u, v) + βΦ(u), β > 0

Ψ(u, v) =

p∑
i=1

ψ(u[i] − v[i]) and Φ(u) =
∑
i

φ(|Giu|)

ψ(·) := ψ(·, α1)

φ(·) := φ(·, α2)

(α1, α2) > 0

{Gi ∈ R1×p} – forward discretization:

N4 Only vertical and horizontal differences;

N8 Diagonal differences are added.

i
Ni4sic c ccc

c si Ni8c c cc c cc c c

(ψ,φ) belong to the family of functions θ(·, α) : R → R satisfying

H1 For any α > 0 fixed, θ(·, α) is Cs>2-continuous, even and θ′′(t, α) > 0, ∀ t ∈ R.

H2 For any α > 0 fixed, |θ′(t, α)| < 1 and for t > 0 fixed, it is strictly decreasing in α > 0

α > 0 ⇒ lim
t→∞

θ′(t, α) = 1 θ′(t, α) :=
d

dt
θ(t, α)

t ∈ R ⇒ lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

⇒ Fv is a fully smoothed ℓ1 − TV energy.
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θ θ′

f1
√
t2 + α

t√
t2 + α

f2 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
f3 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|

Choices for θ(·, α) obeying H1 and H2. When α ↘ 0, θ(·, α) becomes stiff near the origin.

−3 0 3

3

−3 0 3

−1

0

1

−1 0 1

−5

0

5

θ(t) =
√
t2 + α θ′(t) = t√

t2+α
(θ′)

−1
(y) = y

√
α

1−y2

Plots of f1 for α = 0.05 (—–) and for α = 0.5 (−−−).
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The minimizers û of Fv can decrease the quantization noise

Real-valued original v quantized on {0, · · · , 15} Restored û
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[Nikolova, Wen, R. Chan 12]

• For any β > 0, Fv(Rp) has a unique minimizer function U : Rp → Rp which is Cs−1.

Define G :=

p∪
i=1

p∪
j=1

{
g ∈ R1×p : g[i] = −g[j] = 1, i ̸= j, g[k] = 0 if k ̸∈ {i, j}

}
All difference operators Gi belong to G.

NG :=
∪
g∈G

{
v ∈ Rp : g U(v) = 0

}
and NI :=

p∪
i=1

p∪
j=1

{
v ∈ Rp : Ui(v) = v[j]

}

Question 37 How to interpret the sets NG and NI?

• The sets NG and NI are closed in Rp and obey

Lp(NG) = 0 and Lp(NI) = 0

The property is true for any β > 0 and (α1, α2) > 0.
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• Rp \ (NG ∪NI) is open and dense in Rp.

The elements of (NG ∪NI) are highly exceptional in Rp.

• The minimizers û of Fv generically satisfy û[i] ̸= û[j] for any (i, j) such that i ̸= j and

û[i] ̸= v[j] for any (i, j).

�



�
	The minimizers û of Fv have pixel values that are different from

each other and different from any data pixel.

Question 38 Describe the consequences if ℓ1 − TV is approximated

by a smooth function like Fv.

Recall the illustration on p. 24 and the results in section 3 (p. 26) and section 4 (p. 35).
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Further... [Bauss, Nikolova, Steidl 13]

• For any α1 > 0 fixed, there is an inverse function (ψ′)
−1

(·, α1) : (−1, 1) → R which

is odd, Cs−1 and strictly increasing.

α1 7→ (ψ′)
−1

(y, α1) is also strictly increasing on (0,+∞), for any y ∈ (0, 1).

• Set η := ∥G∥1. Then

βη < 1 ⇒ ∥û− v∥∞ 6 (ψ′)
−1 (

βη, α1

)
∀ v ∈ Rp

• Also, ∥û− v∥∞ ↗ (ψ′)
−1 (

βη, α1

)
as α2 ↘ 0.

�� ��Full control on the bound ∥û− v∥∞.

Question 39 Can you suggest applications where the properties of Fv are important?
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Exact histogram specification

• v – input digital gray value m× n image / stored as an p := mn vector

• v[i] ∈ {0, · · · , L− 1} ∀ i ∈ {1, · · · , p} 8-bit image ⇒ L = 256

• Histogram of v: Hv[k] =
1
p#

{
v[i] = k : i ∈ {1, · · · , p}

}
∀ k ∈ {0, · · · , L− 1}

• Target histogram: ζ = (ζ[1], · · · , ζ[L])

• Goal of histogram specification (HS): convert v into û so that Hû = ζ

order the pixels in v: i ≺ j if v[i] < v[j]

i1 ≺ i2 ≺ · · · ≺ iζ[1]︸ ︷︷ ︸ ≺ · · · ≺ ip−ζ[L]+1 ≺ · · · ≺ ip︸ ︷︷ ︸
ζ[1] ζ[L− 1]

• Ill-posed problem for digital (quantized) images since p≫ L

• An issue: obtain a meaningful total strict ordering of all pixels in v

Histogram equalization is a particular case of HS where ζ[k] = p/L ∀ k ∈ {0, · · ·L− 1}
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Histogram Equalization (HE) using Matlab and our ordering

512
512

512
512

input image HE by ”histeq” HE by ”sort” HE our ordering

449 512

64

512
449 512

64

512
449 512

64

512
449 512

64

512

0 255 0 255 0 255

64 64 64 64

Nikolova
Typewritten Text
histograms

Nikolova
Typewritten Text
zooms
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Modern sorting algorithms

For any pixel v[i], extract K auxiliary information, ak[i], k ∈ {1, · · · ,K, from v. Set a0 := v. Then

i ≺ j if v[i] 6 v[j] and ak[i] < ak[j] for some k ∈ {0, · · · ,K}.

Local Mean Algorithm (LM) [Coltuc, Bolon, Chassery 06]

− If two pixels are equal and their local mean is the same, take a larger neighborhood.

− The procedure smooths edges and sorting often fails.

Wavelet Approach (WA) [Wan, Shi 07]

− Use wavelet coefficients from different subbands to order the pixels.

− Heavy and high level of failure.

Specialized variational approach (SVA) [Nikolova, Wen and R. Chan 12]

− Minimize Fv for a parameter choice yielding ∥û− v∥∞ / 0.1.

− Almost no failure, faithful order and fast algorithm. [Nikolova 13]
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Some results using Fv for color image enhancement

New fast histogram based color enhancement algorithm. [Nikolova, Steidl 14]

• [NS 14] M. Nikolova and G. Steidl, “Fast Hue and Range Preserving Histogram Specification:

Theory and New Algorithms for Color Image Enhancement”, IEEE Trans. Image Process., to

appear.

• [HYL 11] J. H. Han, S. Yang, and B. U. Lee, A novel 3-D color histogram equalization method

with uniform 1-D gray scale histogram, IEEE Trans. Image Process., vol. 20, no. 2, pp.

506-512, Feb. 2011.

• [BCPR 07] M. Bertalḿıo, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction

through variational techniques”, IEEE Trans. Image Process., vol. 16, no. 4, pp. 1058–1072,

Apr. 2007.

• [APBC 09] R. Palma-Amestoy, E. Provenzi, M. Bertalḿıo, and V. Caselles, “A perceptually

inspired variational framework for color enhancement”, IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 31, no. 3, pp. 458–474, 2009.

• [ACE G 12] P. Gertreuer, “Automatic color enhancement (ACE) and its fast implementation”,

Image Processing On Line, DOI: 10.5201/ipol.2012.g-ace, vol. 2012
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club (1800× 3200) Hist.-based [NS 14]

0 255 0 255

Hist.-based [NS 14] Perceptual [APBC 09]

0 255
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boy-on-stones (800× 800) Hist.-based [NS 14] Hist.-based [HYL 11]

0 239 0 255 0 255

Perceptual [BCPR 07] Perceptual [APBC 09] ACE [G 12]
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orchid (768× 1024) Hist.-based [NS 14] Hist.-based [HYL 11]

0 255 0 255 0 255

Perceptual [APBC 09] Perceptual [BCPR 07] ACE [G 12]

Input “orchid” with a bad flashlight effect.
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snake (1000× 1000) Hist.-based [HYL 11] Hist.-based [NS 14]

0 197 0 255 0 255

Goal – enhance the snake.
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Summer School 2014: Inverse Problem and Image Processing

Tutorial: Inverse modeling in inverse problems using optimization

Outline

1. Energy minimization methods (p. 7)

2. Regularity results (p. 17)

3. Non-smooth regularization – minimizers are sparse in a given subspace (p. 26)

4. Non-smooth data-fidelity – minimizers fit exactly some data entries (p. 35)

5. Comparison with Fully Smooth Energies (p. 51)

6. Non-convex regularization – edges are sharp (p. 54)

7. Nonsmooth data-fidelity and regularization – peculiar features (p. 62)

8. Fully smoothed ℓ1−TV models – bounding the residual (p. 83)

9. Inverse modeling and Bayesian MAP – there is distortion

10. Some References (p. 103)
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9 Inverse modeling and Bayesian MAP [Nikolova 07]

MAP estimators to combine noisy data and prior

Bayesian approach: U, V random variables, events U = u, V = v.

Likelihood fV|U (v|u), Prior fU (u) ∝ exp{−λΦ(u)}, Posterior fU|V (u|v) = fV|U (v|u)fU (u) 1
Z

MAP û = the most likely solution given the recorded data V = v:

û = argmaxu fU|V (u|v) = argminu

(
− ln fV|U (v|u)− ln fU (u)

)
= argminu

(
Ψ(u, v) + βΦ(u)

)
MAP is the most frequent way to combine models on data-acquisition and priors

Realist models for data-acquisition fV|U and prior fU

⇒ û must be coherent with fV|U and fU

In practice one needs that: U ∼ fU

AU − V ∼ fN
⇒

 fÛ ≈ fU

fN̂ ≈ fN , N̂ ≈ AÛ − V

Our analytical results show that both models (fV|U and fU ) are violated in a MAP estimate
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Example: MAP shrinkage [Simoncelli99, Belge-Kilmer00, Antoniadis02]

• Noisy wavelet coefficients y=Wv=Wuo+n = xo + n, n∼N (0, σ2I)

• Prior: xo[i] are i.i.d., f(xo[i]) = 1
Z
e−λ|xo[i]|α (Generalized Gaussian, GG)

Experiments have shown that α ∈ (0, 1) for many real-world images

• MAP restoration ⇔ x̂[i] = argmin
t∈R

(
(t− y[i])2 + λ|t|α

)
, ∀i

(α, λ, σ) fixed—10 000 independent trials:

(1) sample x ∼ fX and n ∼ N (0, σ2), (2) form y = x+ n, (3) compute the true MAP x̂

−10 0 10
0

250

500

−10 0 10
0

250

500

GG,α = 1.2, λ = 1
2

The true MAP x̂

−2 0 2
0

500

1000

−2 0 2
0

500

1000

Noise N (0, σ2) Noise estimate

−10 0 10
0

5000

−10 0 10
0

5000

−3 0 3
0

20

GG, α = 1
2
, λ = 2 True MAP x̂

−3 0 3
0

100

−3 0 3
0

100

Noise N (0, σ2) Noise estimate
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Theoretical explanations

V = AU + N and fU|V continuous ⇒


Pr(Giu = 0) = 0, ∀i

Pr(ai u = vi) = 0, ∀i

Pr(θ0 < ∥Giu∥ < θ1) > 0, ∀i

The analytical results on û = argmin
u

Fv(u) =MAP yield:

• fU continuous and non-smooth at 0, φ′(0+) > 0 Ch. 3, p. 26

v∈Oĥ ⇒
[
Giû = 0, ∀i ∈ ĥ

]
⇒ Pr(Giû=0,∀i∈ ĥ) > Pr(v∈Oĥ)> 0

The effective prior: Giû = 0 for many i. (e.g. locally constant images)

• fN continuous and nonsmooth at 0, ψ′(0+) > 0 Ch. 4, p. 35

v ∈ Oĥ ⇒
[
ai û=vi, ∀i ∈ ĥ

]
⇒ Pr

(
ai û=vi,∀i ∈ ĥ

)
>Pr(V ∈ Oĥ) > 0

The effective model: there are uncorrupted data entries.

• − ln fU (resp., φ) continuous and nonconvex ⇒ Pr
(
θ0 < ∥GiÛ∥ < θ1

)
= 0, ∀i

The effective prior: edges.

• − ln fU nonconvex, nonsmooth at 0, φ′(0+) > 0 and φ′′ 6 0 Ch. 6, p. 54

⇒ Pr
(
∥Giû∥=0

)
> 0 and Pr

(
0<∥Giû∥<θ1

)
=0



101

Illustration

Original differences Ui − Ui+1 i.i.d.∼ f(t) ∝ e−λφ(t) on [−γ, γ], φ(t) = α|t|
1+α|t|

1 50 100

0

20

1 50 100

0

20

Original uo (—) by f for α = 10, λ = 1, γ = 4 The true MAP û (—), β = 2σ2λ

data v = uo + n (· · · ), N ∼ N (0, σ2I), σ = 5. versus the original uo (· · · ).

Knowing the true distributions, with the true parameters, is not enough.

�� ��Combining models remains an open problem
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�



�
	Knowledge on the features of the minimizers enables

new energies yielding appropriate solutions to be conceived

‘‘ We’re in Act I of a digital revolution.’’

Jay Cassidy (film editor at Mathematical Technologies Inc.)

Thank you!

10 Some References
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de Saint-Flour XVIII - 1988, Springer, Lecture notes in mathematics, pp 117–193

52. Geman D, Reynolds G (1992) Constrained restoration and recovery of discontinuities. IEEE Trans

Pattern Anal Mach Intell PAMI-14:367–383

53. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans

Image Process IP-4:932–946

54. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans Pattern Anal Mach Intell PAMI-6:721–741

55. Green PJ (1990) Bayesian reconstructions from emission tomography data using a modified em

algorithm. IEEE Trans Med Imaging MI-9:84–93



108

56. Lustig M, Donoho D, Santos JM and Pauly LM (2008) Compressed Sensing MRI: a look how CS can

improve our current imaging techniques: IEEE Signal Proc. Magazine. 25:72–82.

57. Haddad A, Meyer Y (2007) Variational methods in image processing, in “Perspective in Nonlinear

Partial Differential equations in Honor of Häım Brezis,” Contemp Math (AMS) 446:273–295
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