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1. MAP estimators to combine noisy data and priors

• Forward model = fY|X(y|x) likelihood - physical considerations on data-acquisition

E.g. Y = AX + N

A — blur, Fourier, Radon, subsampling... and N — noise

{Ni} i.i.d. ∼ fN ⇒ fY|X(y|x) =
∏

i
fN

(
aT

i x− yi

)

If fN =Normal(0, σ2) ⇒ fY|X = 1
Z

e
− ‖Ax−y‖2

2σ2

• Prior = fX(x)

– Markov models —local characteristics— fX(xi

∣∣∣xj , j 6= i) = fX(xi

∣∣∣xj , j ∈ Ni)

Gibbsian form fX(x) ∝ exp{−λΦ(x)}

The Hammersley-Clifford theorem ⇒ Φ(x) =
1

2

∑
i

∑
j∈Ni

ϕ(xi − xj)

– Wavelet expansions — coefficients ui = 〈wi, x〉 are i.i.d. ∼ fUi(t) = e

(
−λiϕ(t)

)
1
Z
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Customary functions ϕ

ϕ(t) = tα, 0 < α ≤ 2 ϕ(t) =
√

α + t2

ϕ(t) = log(cosh(t/α)) ϕ(t) = 1− exp (−αt2)

ϕ(t) = αt2/(1 + αt2) ϕ(t) = α|t|/(1 + α|t|)
ϕ(t) = min{αt2, 1} ϕ(t) = log (α|t|+ 1)

and many others...

• The posterior (Bayesian rule) fX|Y (x|y) = fY|X(y|x)fX(x) 1
Z

Z = fY (y)

MAP x̂ = the most likely solution given the recorded data Y = y:

x̂ = arg max
x

fX|Y (x|y) = arg min
x

(
− ln fY|X(y|x)− ln fX(x)

)

= arg min
x

(
Ψ(x, y) + βΦ(x)

)
Examples:

Ey(x) = ‖Ax− y‖2 + βΦ(x), β = 2σ2λ

Ey(u) =
∑

i

(
(ui − 〈wi, y〉)2 + λiϕ(|ui|)

)
, x̂ = W †û

More and more realist models for data-acquisition fY|X and prior fX

... natural expectation that x̂ is coherent with fY|X and fX

(If X ∼ fX and AX − Y ∼ fN then X̂ ∼ fX and AX̂ − Y ∼ fN )

Contradiction: the MAP solution substantially deviates from the models !
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2. Gap between models and estimate

Analytical example on IR

Y = X + N
fX(x) =

{
λe−λx if x ≥ 0

0 else

N ∼ Normal(0, σ2)

The MAP x̂ is the minimizer on [0, +∞) of Ey(x) = (x− y)2 + βx for β = 2σ2λ

x̂ =

{
0 if y < β

2

y − β
2

> 0 if y ≥ β
2

fX̂(x̂) = fX(x̂) ξ(x̂) + c Dirac(x̂) where

{
ξ(x̂) = e

λ
2 (λσ2−β)

∫∞
0

fN (x− x̂− β
2

+ λσ2)dx

c =
∫∞
0

fX(x)
∫ β

2−x

−∞ fN (n)dndx ∈ (0, 1).

⇒ fX̂ is fundamentally dissimilar to fX

The noise estimate n̂ = y − x̂ =

{
y if y < β

2
β
2

if y ≥ β
2

fN̂ (n̂) = fN (n̂) 1l(n̂ < β
2
) ζ(n̂) + (1− c) Dirac(n̂− β

2
) for ζ(n̂) =

∫∞
0

fX(x)e
− x2−2n̂x

2σ2 dx

⇒ fN̂ is upper bounded by β
2
, dissimilar to fN
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In general fX̂ and fN̂ cannot be calculated

Distribution of the MAP for generalized Gaussian priors

MAP restoration of noisy wavelet coefficients with Gaussian noise

Noise-free wavelet coefficients are i.i.d. and follow GG

fX(x) =
1

Z
e−λ|x|α , x ∈ IR

MAP ûi of each noisy coefficient 〈wi, y〉 minimizes

Ey(x) = (x− y)2 + β|x|α for β = 2σ2λ

For (α, λ) and σ fixed, we realize 10 000 independent trials:

• sample x ∈ IR from fX

• y = x + n for n ∼Normal(0, σ2)

• compute the true MAP solution x̂
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fX|Y (., y) has one mode if α ≥ 1
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GG prior for α = 1.2, λ = 0.5 The true MAP x̂

−2 0 2
0

500

1000

−2 0 2
0

500

1000

Noise Normal(0, σ2) for σ = 0.6 The noise estimate n̂ = y − x̂
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If 0 < α < 1, fX|Y (., y) has two modes, x̂1 = 0 and x̂2 with |x̂2| > θ for θ =
(

2
α(1−α)β

) 1
α−2 ≈ 0.47

⇒ fX̂ has a Dirac at zero and is null on
(
− θ, 0

)⋃(
0, θ)

−10 0 10
0

5000

−10 0 10
0

5000

−3 0 3
0

20

Prior fX for α = 0.5, λ = 2 True MAP x̂ Zoom of the histogram of x̂

−3 0 3
0

100

−3 0 3
0

100

Noise Normal(0, σ2) for σ = 0.8 Noise estimate n̂ = y − x̂

x̂ = 0 in 77% of the trials and min{|x̂i| : xi 6= 0} = 0.77 > θ
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3. Non-smooth at zero priors

A Laplacian Markov chain corrupted with Gaussian noise

Markov chain with a Gibbsian distribution fX ∝ e−λΦ(x)

Φ(x) = λ

p−1∑
i=1

|xi − xi+1|, λ > 0

Xi −Xi+1, 1 ≤ i ≤ p− 1 are Laplacian and i.i.d.

f∆X(t) =
λ

2
e−λ|t|

Y = X + N , N ∼Normal(0, σ2I)

fX|Y (x|y) = exp

(
− 1

2σ2
Ey(x)

)
1

Z

Ey(x) = ‖x− y‖2 + β

p−1∑
i=1

∣∣∣xi − xi+1

∣∣∣, β = 2σ2λ
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0
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100 400

0

5

Original x (—), xi − xi+1 sampled from f∆X The true MAP x̂ (—) versus the original x (- - -).

for λ = 8 and data y = x + n (· · ·) for σ = 0.5. x̂ involves 92% null differences

Coherence with the models: for p →∞
{

Hist(x̂i − x̂i+1) ≈ f∆X

Hist(yi − x̂i) ≈ fN
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The same experiment (500-length signals) 40 times:

−0.5 0 0.5
0

10000

−0.5 0 0.5
0

10000

40×499 differences xi − xi+1 The differences x̂i − x̂i+1

sampled from f∆X for λ = 8. of the true MAP solutions.

87% of all restored differences are null

The MAP solution is far from representing the prior

The observed incoherence is inherent — it originates from the analytical properties of the MAP solution
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Analytical results on the MAP and their statistical meaning

Φ(x) = λ

r∑
i=1

ϕ(‖Gix‖)

Gi, 1 ≤ i ≤ r linear operators (e.g. finite differences or discrete derivatives)

ϕ : IR+ → IR+ is increasing, Cm and

ϕ′(0) > 0

fX(x) ∝
r∏

i=1

e−λϕ(‖Gix‖).

fY|X(y|x) ∝ e−Ψ(x,y) where Ψ ∼ Cm, m ≥ 2

The MAP estimator X̂ minimizes

Ey(x) = Ψ(x, y) + λΦ(x)
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Theorem [Nikolova 2000, 2004] Given y ∈ IRq , let x̂ ∈ IRp be such that for

J =

{
i ∈ {1, . . . , r} : Gix̂ = 0

}
and KJ =

{
u ∈ IRp : Giu = 0, ∀i ∈ J

}
, we have

(a) δEy(x̂)(u) > 0 for every u ∈ K⊥
J \ {0};

(b) DEy |KJ
(x̂)u = 0 and D2Ey |KJ

(x̂)(u, u) > 0, for every u ∈ KJ \ {0}.

Then Ey has a strict (local) minimum at x̂. Moreover, there are a neighborhood OJ of y and a

continuous function X : OJ → IRp such that X (y) = x̂ and that for every y′ ∈ OJ , Ey′ has a (local)

minimum at x̂′ = X (y′) satisfying

Gix̂
′ = 0 ∀i ∈ J,

or equivalently, that x̂′ ∈ KJ for every y′ ∈ OJ .

(a) and (b) ensure that Ey has a strict local minimum at x̂ they are quite general:

Proposition[Durand&Nikolova2006] Let Ψ(x, y) = 1
2σ2 ‖Ax− y‖2 with AT A invertible. Define

Ω ⊂ IRq to be such that if y ∈ Ω then every (local) minimizer x̂ of Ey is strict, and that (a) and (b)

hold. Then

(i) Ωc (the complement of Ω in IRq) is of Lebesgue measure zero;

(ii) if in addition limt→∞ ϕ′(t)/t = 0, then the closure of Ωc is of Lebesgue measure zero as well.
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OJ contains an open subset of IRq

y ∈ OJ and x̂ = arg max
x∈IRp

fX|Y (x|y) ⇒ Gix̂ = 0 ∀i ∈ J

or equivalently x̂ ∈ KJ

⇒ Pr(X̂ ∈ KJ) ≥ Pr(Y ∈ OJ) =

∫

OJ

fY (y)dy > 0

since fY (y) =
∫

fY|X(y|x)fX(x)dx = 1
Z

∫
e−Ey(x)dx > 0, ∀y

The “prior” model on the unknown X which is effectively realized by the MAP estimator X̂

corresponds to images and signals such that GiX̂ = 0 for a certain number of indexes i.

If {Gi}=first-order, then effective prior model for locally constant images and signals.

According to the prior, for any nonempty J ⊂ {1, . . . , r}

Pr(X ∈ KJ) =

∫

KJ

fX(x)dx = 0

since dimKJ ⊂ IRp < p and x ∈ IRp
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Linear Gaussian data model with A invertible and a Laplacian Markov chain prior

fX|Y (x|y) ∝ exp (−Ey(x)) + const

Ey(x) = ‖Ax− y‖2 + β

p−1∑
i=1

|xi − xi+1|, β = 2σ2λ

Striking phenomena:

(a) for every x̂ ∈ IRp, there is a polyhedron Qx̂ ⊂ IRq of dimension #J for J = {i : Gix̂ = 0}, such

that for every y ∈ Qx̂, the same point x̂ is the unique minimizer of E(., y);

(b) for every J ⊂ {1, . . . , p− 1}, there is a subset ÕJ ⊂ IRq , composed of 2n−#J−1 unbounded

polyhedra of IRq , such that for every y ∈ ÕJ , the minimizer x̂ of Ey satisfies x̂i = x̂i+1 for all

i ∈ J and x̂i 6= x̂i+1 for all i ∈ Jc. Moreover, their closure forms a covering of IRq .

⇒ ∀J ⊂ {1, . . . , p− 1}
Pr

(
X̂i = X̂i+1,∀i ∈ J

)
≥ Pr

(
Y ∈ ÕJ

)
> 0.

⇒ x̂ are composed of constant pieces.

However, the prior model yields Pr
(
Xi = Xi+1

)
= 0 for every i ∈ {1, . . . , p− 1}.
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4. Non-smooth at zero noise models

Y = AX + N where Ni ∼ fN are i.i.d.

fN (t) =
1

Z
e−σψ(t)

ψ : IR → IR is Cm, m ≥ 2, on IR \ {0} and

0 < ψ′(0+) = −ψ′(0−) < ∞

fY|X(y|x) ∝ exp(−σΨ(x, y))

Ψ(x, y) =

q∑
i=1

ψ(aT
i x− yi)

If N ∼ Laplacian i.i.d. noise ⇒ Ψ(x, y) = ‖Ax− y‖11
Notice Pr

(
Ni = 0

)
= 0 for every i ∈ {1, . . . , q}

Let X ∼ Gibbsian where Φ : IRp → IR is Cm

The MAP x̂ minimizes

Ey(x) = Ψ(x, y) + βΦ(x), β =
λ

σ
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Generalized Gaussian Markov chain under Laplace noise

X — Markov chain, Xi −Xi+1 ∼ f∆X are i.i.d.

f∆X(t) =
1

Z
e−λ|t|α

Y = X + N where Ni, 1 ≤ i ≤ p are i.i.d. with fN (t) = σ
2
e−σ|t|

fX|Y (x|y) = exp

(
− σEy(x)

)
1

Z

Ey(x) =

p∑
i=1

∣∣xi − yi

∣∣ + β

p−1∑
i=1

|xi − xi+1|α where β =
λ

σ
.
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0
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−10

0

GG Markov chain x (—) for α = 1.2, λ = 1 The true MAP x̂ (—)

data y = x + n (· · ·) versus the original x (· · ·)

1 50 100

−1

1

1 50 100

−1

1

Laplacian i.i.d. noise n for σ = 2.5 The noise estimate n̂ = y − x̂.

Notice xi 6= yi for all i

The MAP x̂ contains 93% samples satisfying x̂i = yi.
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The same experiment 1000 times

−4 0 4
0

1000

−4 0 4
0

1000

All original differences xi − xi+1 sampled The differences x̂i − x̂i+1 of the

from f∆X for α = 1.2 and λ = 1 true MAP solutions x̂.

−2 0 2
0

5

x 10
4

−2 0 2
0

5

x 10
4

Laplacian i.i.d. noise by for σ = 2.5. All the residuals y − x̂.

x̂i = yi for 87% of the samples in all trials ⇒ most of the samples x̂i keep the noise intact

19



Main analytical result and statistical interpretation

Theorem [Nikolova2001] Given y ∈ IRq , suppose that x̂ ∈ IRp is such that for

J =
{

i ∈ {1, . . . , q} : aT
i x̂ = yi

}
and KJ = {u ∈ IRp : aT

i u = 0 ∀i ∈ J} we have:

(a) the set {ai : i ∈ J} is linearly independent;

(b) DEy |x̂+KJ
(x̂)u = 0 and D2Ey |x̂+KJ

(x̂)(u, u) > 0, for every u ∈ KJ \ {0};

(c) δEy(x̂)(u) > 0, for every u ∈ K⊥
J \ {0}.

Then Ey has a strict (local) minimum at x̂. Moreover, there are a neighborhood OJ ⊂ IRq

containing y and a Cm−1 function X : OJ → IRp such that for every y′ ∈ OJ , the function Ey′ has

a (local) minimum at x̂′ = X (y′) and that the latter satisfies

aT
i x̂′ = y′i if i ∈ J,

aT
i x̂′ 6= y′i if i ∈ Jc.

Hence X (y′) ∈ x̂ + KJ for every y′ ∈ OJ .

Weak assumptions: Pr that (a) fails =0, (b)-(c) sufficient conditions for a strict local minimum.
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Crucial: OJ contains an open subset of IRq

Pr
(
aT

i X̂ − Yi = 0
)
≥ Pr (Y ∈ OJ) =

∫

OJ

fY (y)dy > 0 ∀i ∈ J

For all i ∈ J , the prior has no influence on the solution and the noise remains intact

This contradicts the noise model since

Pr
(
aT

i X − Yi = 0
)

= Pr (Ni = 0) = 0, ∀i

Let A invertible and Φ Gibbsian

O∞ =
{

y ∈ IRp : ‖DΦ(A−1y)‖ <
ψ′(0+)

β
min
‖u‖=1

p∑
i=1

|aT
i u|

}

Pr(AX̂ = Y ) ≥ Pr(Y ∈ O∞) > 0.

Amazing: on O∞ the prior has no influence on the solution

y ∈ O∞ ⇒ aT
i x̂ = yi, ∀i
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A Laplace noise model to remove impulse noise

Ey(x) =

p∑
i=1

|xi − yi|+ β

2

∑
i

∑
j∈Ni

ϕ(xi − xj)

ϕ symmetric C1 strictly convex edge-preserving

Bayesian standpoint: Y = X + N with N Laplacian white noise

Previous results: the MAP cannot efficiently clean Laplacian noise (all x̂i such that

x̂i = yi = xi + ni keep the noise intact while ni 6= 0 almost surely)

What is the noise model which is effectively realized by the MAP?

Ey reaches its minimum at a point x̂ ∈ IRp, for which we define

J =
{

i ∈ {1, . . . , p} : x̂i = yi

}
, if, and only if,

i ∈ J ⇒
∣∣∣∣∣
∑
j∈Ni

ϕ′(yi − x̂j)

∣∣∣∣∣ ≤
1

β
,

i ∈ Jc ⇒
∑
j∈Ni

ϕ′(x̂i − x̂j) =
σi

β
, σi = sign

(∑
j∈Ni

ϕ′(yi − x̂j)

)
∈ {−1, 1}.
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Proposition Let β > 1 and ϕ′′(t) > 0 for all t ∈ IR. Choose a nonempty J ⊂ {1, . . . , p} as well as

σi ∈ {−1, 1} for every i ∈ Jc. Then there are y ∈ IRp and ρ > 0 such that if OJ reads

OJ =

{
y′ ∈ IRp :

∣∣∣∣∣
|y′i − yi| ≤ ρ ∀i ∈ J

σiy
′
i ≥ σiyi − ρ ∀i ∈ Jc

}

then for every y′ ∈ OJ the function Ey′ reaches its minimum at an x̂′ ∈ IRp such that

x̂′i = y′i ∀i ∈ J,

x̂′i = Xi({y′i : i ∈ J}) ∀i ∈ Jc,

where Xi, i ∈ Jc are continuous functions that depend only on y′i for i ∈ J .

• Pr(Y ∈ OJ ) > 0 since OJ contains an open of IRp

• OJ are disjoint, hence
Pr(X̂i − Yi = 0) ≥

∑
J:i∈J

Pr(Y ∈ OJ ) > 0, ∀i

• Contradicts the Laplacian noise model involved in Ey : Pr(Xi − Yi = 0) = 0, ∀i ∈ {1, . . . , p}
• The data samples y′i, i ∈ J are fitted exactly, hence they must be free of noise.

Otherwise i ∈ Jc and y′i is replaced by the estimate x̂′i = Xi({y′i : i ∈ J})
Hence y′i, i ∈ Jc is outlier and can take any value on the half-line contained in OJ .

• The MAP estimator defined by Ey corresponds to an impulse noise model on the data
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0

1 50 100

−10

0

Original x (—), data y (- - -) The minimizer x̂ of Ey for β = 0.4 (—),

with 10% random valued impulse noise. the original x (- - -), and yi 6= xi (¦)
x̂i = yi for 89/90 of the noise-free samples.
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5. Priors with non-convex energies

Y = AX + N with N ∼ Normal(0, σ2I) and a Gibbsian prior with a nonconvex Φ

Φ(x) =

r∑
i=1

ϕ(gT
i x) (1)

gi difference operators

ϕ

{
symmetric, C2 and increasing on (0, +∞) with a strict minimum at zero

and ∃ θ > 0 such that ϕ′′(θ) < 0 and lim
t→∞

ϕ′′(t) = 0 (nonconvex)

The MAP x̂ yields the (global) minimum of

Ey(x) = ‖Ax− y‖2 + βΦ(x), β = 2σ2λ

Since [Geman21984] various nonconvex ϕ to produce x̂ with smooth regions and sharp edges.
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Piecewise Gaussian Markov chain in Gaussian noise

The piecewise GM chain = discrete 1D Mumford-Shah model = the weak-string model

X such that Xi+1 −Xi are i.i.d. ∼ f∆X(t) ∝ e−λϕ(t)

ϕ(t) =

{
αt2 if |t| <

√
1
α

1 else
= min{αt2, 1}

Φ(x) =
∑p−1

i=1
ϕ(xi − xi+1)

Theorem [Nikolova 2000] Define ui ∈ IRp by ui[j] = 0 if 1 ≤ j ≤ i and ui[j] = 1 if j ≥ i + 1 (step),

and P = I − A1l1lT AT

‖A1l‖2 (projection). If Ey has a global minimum at x̂, then ∀i ∈ {1, . . . , p− 1}

either |x̂i − x̂i+1| ≤ 1√
α

Γi or |x̂i − x̂i+1| ≥ 1√
α Γi

Γi =

√
‖PAui‖2

‖PAui‖2+αβ
< 1. In particular, x̂i − x̂i+1 = 0 if PAui = 0.

⇒ Pr

(
Γi√
α

< |X̂i − X̂i+1| < 1√
αΓi

)
= 0

whereas a priori Pr

(
Γi√
α

< |Xi −Xi+1| < 1√
αΓi

)
> 0
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We repeat 200 times the following experiment:

• generate X = x of length p = 300 where xi − xi+1 are sampled from f∆X for α = 1, λ = 5 and

γ = 15

• y = x + n where n ∼Normal(0, σ2I), σ = 4

• compute x̂ = arg min Ey for the true parameter β = 2σ2λ = 160.

−15 0 15
0

3000

−15 0 15
0

3000

−15 0 15
0

100

−15 0 15
0

100

Histogram of all original differences Histogram of the differences for all the

xi − xi+1 (up) and zoom (bottom). true MAP solutions x̂ (up) and zoom (bottom).
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MAP for smooth at zero functions ϕ

Additional assumption: ϕ is C2 and ∃τ > 0, T ∈ (τ,∞) such that ϕ′′(t) ≥ 0 if t ∈ [0, τ ] and ϕ′′(t) ≤ 0

if t ≥ τ , where ϕ′′ is decreasing on (τ, T ) and increasing on (T ,∞)

G ∈ IRr×p, row i= gT
i

ei — the ith vector of the canonical basis of IRp

Theorem [Nikolova05] Let rank G = r and β >
2‖AT A‖
|ϕ′′(T )| max

i
‖GT (GGT )−1ei‖2. Then

∃θ0 ∈ (τ, T ) and ∃θ1 ∈ (T ,∞) such that ∀y, every minimizer x̂ of Ey satisfies

either |gT
i x̂| ≤ θ0, or |gT

i x̂| ≥ θ1, ∀i ∈ {1, . . . , r}.

⇒ Pr

(
θ0 < |gT

i X̂| < θ1

)
= 0, ∀i ∈ {1, . . . , r}

The prior model effectively realized by the MAP estimator corresponds to images and signals whose

differences are either smaller than θ0 or larger than θ1.

Different from the prior since Pr

(
θ0 < |gT

i X| < θ1

)
> 0, ∀i ∈ {1, . . . , r}.
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MAP for non-smooth at zero functions ϕ

Additional assumption : ϕ′(0+) > 0 and that ϕ′′ is increasing on (0,∞) with ϕ′′(t) ≤ 0, ∀t > 0

Theorem There is a constant µ > 0 such that if β >
2µ2 ‖AT A‖
|ϕ′′(0+)| , then there exists θ1 > 0 such

that for every y ∈ IRq , every minimizer x̂ of Ey satisfies

either |gT
i x̂| = 0, or |gT

i x̂| ≥ θ1, ∀i ∈ {1, . . . , r}.

If |ϕ′′(0+)| = ∞ the condition is β > 0.

The alternative holds for any realization Y = y. Hence

Pr

(
|gT

i X̂| = 0

)
> 0,

Pr

(
0 < |gT

i X̂| < θ1

)
= 0.

(The sample space of X̂ is disconnected and semi-discrete)

If {gi, 1 ≤ i ≤ r} — first-order differences between neighbors, every minimizer x̂ of Ey is composed out

of constant patches separated by edges higher than θ1 ≡ the effective prior model realized by the MAP

Disagreement with the prior fX for which Pr

(
|gT

i X| = 0

)
= 0 and Pr

(
0 < |gT

i X| < θ1

)
> 0
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Original x with differences Xi −Xi+1 i.i.d. on [−γ, γ] with density

f∆X(t) ∝ e−λϕ(t), ϕ(t) =
α|t|

1 + α|t|

1 50 100

0

20

1 50 100

0

20

Original x (—) by f∆X for α = 10, λ = 1, γ = 4 The true MAP x̂ (—), β = 2σ2λ

data y = x + n (· · ·), N ∼ Normal(0, σ2I), σ = 5. versus the original x (· · ·).

• x̂ is constant on many pieces which are separated by large edges.

Its visual aspect is fundamentally different from the original x

• x does not involve constant zones and its differences take any value on [−γ, γ].
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6. Conclusion

• MAP estimators do not match the underlying models for the production of the data and

for the prior

Experimental demonstration and theoretical explanation

Embarrassing... the problem of β never solved

• Based on some analytical properties of the MAP solutions, we partially characterize the

models that are effectively realized by the MAP solutions.

• Conjecture: similar problems generally arise with other Bayesian estimators too.

• Combining models is an open problem

• Papers available at http://www.cmla.ens-cachan.fr/ nikolova/
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