Contre-examples for Bayesian MAP restoration

Mila Nikolova

CMLA—ENS de Cachan, 61 av. du Président Wilson, 94235 Cachan cedex (nikolova@cmla.ens-cachan.fr)

Obergurgl, September 2006

Outline

1. MAP estimators to combine noisy data and priors

Combining observed data y for the unknown x with priors on x

$$\hat{x} = \arg\min\left\{\Psi(x,y) + \beta\Phi(x)\right\}$$

- Examples of gaps between models and estimate
 MAP solutions (substantially) deviate from the data model and from the prior
 Instead effective prior (based on properties of minimizers)
- 3. Non-smooth at zero priors
- 4. Non-smooth at zero noise models
- 5. Priors with non-convex energies
- 6. Concluding remarks

1. MAP estimators to combine noisy data and priors

• Forward model = $f_{Y|X}(y|x)$ likelihood - physical considerations on data-acquisition

$$\mathsf{E.g.} \quad Y = AX + N$$

A — blur, Fourier, Radon, subsampling... and N — noise

$$\{N_i\} \text{ i.i.d. } \sim f_N \Rightarrow f_{Y|X}(y|x) = \prod_i f_N\left(a_i^T x - y_i\right)$$
$$\text{If } f_N = \text{Normal}(0, \sigma^2) \Rightarrow f_{Y|X} = \frac{1}{Z}e^{-\frac{\|Ax - y\|^2}{2\sigma^2}}$$

• Prior =
$$f_X(x)$$

- Markov models —local characteristics— $f_X(x_i | x_j, j \neq i) = f_X(x_i | x_j, j \in \mathcal{N}_i)$ Gibbsian form $f_X(x) \propto \exp\{-\lambda \Phi(x)\}$ The Hammersley-Clifford theorem $\Rightarrow \Phi(x) = \frac{1}{2} \sum_{i} \sum_{j \in \mathcal{N}_i} \varphi(x_i - x_j)$

- Wavelet expansions — coefficients $u_i = \langle w_i, x \rangle$ are i.i.d. $\sim f_{U_i}(t) = e^{\left(-\lambda_i \varphi(t)\right)} \frac{1}{Z}$

Customary functions φ

$$\begin{split} \varphi(t) &= t^{\alpha}, \ 0 < \alpha \leq 2 & \varphi(t) = \sqrt{\alpha + t^2} \\ \varphi(t) &= \log(\cosh(t/\alpha)) & \varphi(t) = 1 - \exp(-\alpha t^2) \\ \varphi(t) &= \alpha t^2 / (1 + \alpha t^2) & \varphi(t) = \alpha |t| / (1 + \alpha |t|) \\ \varphi(t) &= \min\{\alpha t^2, 1\} & \varphi(t) = \log(\alpha |t| + 1) \\ \text{ and many others...} \end{split}$$

• The posterior (Bayesian rule) $f_{X|Y}(x|y) = f_{Y|X}(y|x)f_X(x)\frac{1}{Z}$ $Z = f_Y(y)$

MAP $\hat{x} =$ the most likely solution given the recorded data Y = y:

$$\hat{x} = \arg \max_{x} f_{X|Y}(x|y) = \arg \min_{x} \left(-\ln f_{Y|X}(y|x) - \ln f_{X}(x) \right)$$
$$= \arg \min_{x} \left(\Psi(x,y) + \beta \Phi(x) \right)$$

Examples:

$$E_y(x) = ||Ax - y||^2 + \beta \Phi(x), \quad \beta = 2\sigma^2 \lambda$$

$$E_y(u) = \sum_i \left((u_i - \langle w_i, y \rangle)^2 + \lambda_i \varphi(|u_i|) \right), \quad \hat{x} = W^{\dagger} \hat{u}$$

More and more realist models for data-acquisition $f_{Y|X}$ and prior f_X ... natural expectation that \hat{x} is coherent with $f_{Y|X}$ and f_X (If $X \sim f_X$ and $AX - Y \sim f_N$ then $\hat{X} \sim f_X$ and $A\hat{X} - Y \sim f_N$)

Contradiction: the MAP solution substantially deviates from the models !

2. Gap between models and estimate

Analytical example on $I\!\!R$

$$\begin{array}{ll} \hline H & It \end{array} \\ Y = X + N \\ & & f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{else} \\ & & N \sim \mathsf{Normal}(0, \sigma^2) \end{cases}$$

The MAP \hat{x} is the minimizer on $[0, +\infty)$ of $E_y(x) = (x - y)^2 + \beta x$ for $\beta = 2\sigma^2 \lambda$

$$\begin{split} \hat{x} &= \begin{cases} 0 & \text{if } y < \frac{\beta}{2} \\ y - \frac{\beta}{2} > 0 & \text{if } y \geq \frac{\beta}{2} \end{cases} \\ f_{\hat{X}}(\hat{x}) &= f_X(\hat{x}) \ \xi(\hat{x}) + c \ \text{Dirac}(\hat{x}) & \text{where} \begin{cases} \xi(\hat{x}) &= e^{\frac{\lambda}{2}(\lambda\sigma^2 - \beta)} \int_0^\infty f_N(x - \hat{x} - \frac{\beta}{2} + \lambda\sigma^2) dx \\ c &= \int_0^\infty f_X(x) \int_{-\infty}^{\frac{\beta}{2} - x} f_N(n) dn dx \in (0, 1). \end{cases} \\ \Rightarrow & f_{\hat{X}} \text{ is fundamentally dissimilar to } f_X \\ \text{The noise estimate } \hat{n} &= y - \hat{x} = \begin{cases} y & \text{if } y < \frac{\beta}{2} \\ \frac{\beta}{2} & \text{if } y \geq \frac{\beta}{2} \end{cases} \\ f_{\hat{N}}(\hat{n}) &= f_N(\hat{n}) \ \mathbbm{1}(\hat{n} < \frac{\beta}{2}) \ \zeta(\hat{n}) + (1 - c) \ \text{Dirac}(\hat{n} - \frac{\beta}{2}) & \text{for } \zeta(\hat{n}) = \int_0^\infty f_X(x) e^{-\frac{x^2 - 2\hat{n}x}{2\sigma^2}} dx \\ \Rightarrow & f_{\hat{N}} \text{ is upper bounded by } \frac{\beta}{2}, \ \text{dissimilar to } f_N \end{cases}$$

In general $f_{\hat{X}}$ and $f_{\hat{N}}$ cannot be calculated

Distribution of the MAP for generalized Gaussian priors

MAP restoration of noisy wavelet coefficients with Gaussian noise

Noise-free wavelet coefficients are i.i.d. and follow GG

$$f_X(x) = \frac{1}{Z} e^{-\lambda |x|^{\alpha}}, \quad x \in \mathbb{R}$$

MAP \hat{u}_i of each noisy coefficient $\langle w_i, y \rangle$ minimizes

$$E_y(x) = (x - y)^2 + \beta |x|^{\alpha}$$
 for $\beta = 2\sigma^2 \lambda$

For (α, λ) and σ fixed, we realize 10 000 independent trials:

- sample $x \in I\!\!R$ from f_X
- y = x + n for $n \sim \text{Normal}(0, \sigma^2)$
- compute the true MAP solution \hat{x}

 $f_{X|Y}(.,y)$ has one mode if $\alpha \geq 1$

If $0 < \alpha < 1$, $f_{X|Y}(., y)$ has two modes, $\hat{x}_1 = 0$ and \hat{x}_2 with $|\hat{x}_2| > \theta$ for $\theta = \left(\frac{2}{\alpha(1-\alpha)\beta}\right)^{\frac{1}{\alpha-2}} \approx 0.47$ $\Rightarrow f_{\hat{X}}$ has a Dirac at zero and is null on $\left(-\theta, 0\right) \bigcup \left(0, \theta\right)$

 $\hat{x} = 0$ in 77% of the trials and $\min\{|\hat{x}_i| : x_i \neq 0\} = 0.77 > \theta$

3. Non-smooth at zero priors

A Laplacian Markov chain corrupted with Gaussian noise

Markov chain with a Gibbsian distribution $f_X \propto e^{-\lambda \Phi(x)}$

$$\Phi(x) = \lambda \sum_{i=1}^{p-1} |x_i - x_{i+1}|, \quad \lambda > 0$$

 $X_i - X_{i+1}$, $1 \le i \le p-1$ are Laplacian and i.i.d.

$$f_{\Delta X}(t) = \frac{\lambda}{2} e^{-\lambda |t|}$$

Y = X + N, $N \sim Normal(0, \sigma^2 I)$

$$f_{X|Y}(x|y) = \exp\left(-\frac{1}{2\sigma^2}E_y(x)\right)\frac{1}{Z}$$
$$E_y(x) = \|x-y\|^2 + \beta \sum_{i=1}^{p-1} |x_i - x_{i+1}|, \quad \beta = 2\sigma^2\lambda$$

Original x (—), $x_i - x_{i+1}$ sampled from $f_{\Delta X}$ for $\lambda = 8$ and data y = x + n (···) for $\sigma = 0.5$.

The true MAP \hat{x} (—) versus the original x (- - -). \hat{x} involves 92% null differences

Coherence with the models: for $p \to \infty$

$$\begin{aligned} \mathsf{Hist}(\hat{x}_i - \hat{x}_{i+1}) &\approx f_{\Delta X} \\ \mathsf{Hist}(y_i - \hat{x}_i) &\approx f_N \end{aligned}$$

The same experiment (500-length signals) 40 times:

87% of all restored differences are null

The MAP solution is far from representing the prior

The observed incoherence is inherent — it originates from the analytical properties of the MAP solution

Analytical results on the MAP and their statistical meaning

$$\Phi(x) = \lambda \sum_{i=1}^{r} \varphi(\|G_i x\|)$$

 G_i , $1 \le i \le r$ linear operators (e.g. finite differences or discrete derivatives) $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, \mathcal{C}^m and

 $\varphi'(0) > 0$

$$f_X(x) \propto \prod_{i=1}^r e^{-\lambda \varphi(\|G_i x\|)}$$

 $f_{Y|X}(y|x) \propto e^{-\Psi(x,y)}$ where $\Psi \sim \mathcal{C}^m$, $m \geq 2$ The MAP estimator \hat{X} minimizes

$$E_y(x) = \Psi(x, y) + \lambda \Phi(x)$$

Theorem [Nikolova 2000, 2004] Given $y \in \mathbb{R}^q$, let $\hat{x} \in \mathbb{R}^p$ be such that for $J = \left\{ i \in \{1, \ldots, r\} : G_i \hat{x} = 0 \right\}$ and $K_J = \left\{ u \in \mathbb{R}^p : G_i u = 0, \forall i \in J \right\}$, we have (a) $\delta E_y(\hat{x})(u) > 0$ for every $u \in K_J^{\perp} \setminus \{0\}$;

(b)
$$DE_y|_{K_J}(\hat{x})u = 0$$
 and $D^2E_y|_{K_J}(\hat{x})(u,u) > 0$, for every $u \in K_J \setminus \{0\}$.

Then E_y has a strict (local) minimum at \hat{x} . Moreover, there are a neighborhood O_J of y and a continuous function $\mathcal{X} : O_J \to \mathbb{R}^p$ such that $\mathcal{X}(y) = \hat{x}$ and that for every $y' \in O_J$, $E_{y'}$ has a (local) minimum at $\hat{x}' = \mathcal{X}(y')$ satisfying

$$G_i \hat{x}' = 0 \quad \forall i \in J,$$

or equivalently, that $\hat{x}' \in K_J$ for every $y' \in O_J$.

(a) and (b) ensure that E_y has a strict local minimum at \hat{x} they are quite general:

Proposition[Durand&Nikolova2006] Let $\Psi(x, y) = \frac{1}{2\sigma^2} ||Ax - y||^2$ with $A^T A$ invertible. Define $\Omega \subset \mathbb{R}^q$ to be such that if $y \in \Omega$ then every (local) minimizer \hat{x} of E_y is strict, and that (a) and (b) hold. Then

(i) Ω^c (the complement of Ω in \mathbb{R}^q) is of Lebesgue measure zero;

(ii) if in addition $\lim_{t\to\infty} \varphi'(t)/t = 0$, then the closure of Ω^c is of Lebesgue measure zero as well.

 O_J contains an open subset of $I\!\!R^q$

$$y \in O_J$$
 and $\hat{x} = \arg \max_{x \in I\!\!R^p} f_{X|Y}(x|y) \Rightarrow G_i \hat{x} = 0 \quad \forall i \in J$

or equivalently $\hat{x} \in K_J$

$$\Rightarrow \quad \Pr(\hat{X} \in K_J) \ge \Pr(Y \in O_J) = \int_{O_J} f_Y(y) dy > 0$$

since $f_Y(y) = \int f_{Y|X}(y|x) f_X(x) dx = \frac{1}{Z} \int e^{-E_y(x)} dx > 0$, $\forall y$

The "prior" model on the unknown X which is effectively realized by the MAP estimator \hat{X} corresponds to images and signals such that $G_i \hat{X} = 0$ for a certain number of indexes *i*. If $\{G_i\}$ =first-order, then effective prior model for locally constant images and signals.

According to the prior, for any nonempty $J \subset \{1, \dots, r\}$

$$\Pr(X \in K_J) = \int_{K_J} f_X(x) dx = 0$$

since dim $K_J \subset I\!\!R^p < p$ and $x \in I\!\!R^p$

Linear Gaussian data model with A invertible and a Laplacian Markov chain prior

$$f_{X|Y}(x|y) \propto \exp(-E_y(x)) + const$$

$$E_y(x) = ||Ax - y||^2 + \beta \sum_{i=1}^{p-1} |x_i - x_{i+1}|, \quad \beta = 2\sigma^2 \lambda$$

Striking phenomena:

- (a) for every $\hat{x} \in \mathbb{R}^p$, there is a polyhedron $Q_{\hat{x}} \subset \mathbb{R}^q$ of dimension #J for $J = \{i : G_i \hat{x} = 0\}$, such that for every $y \in Q_{\hat{x}}$, the same point \hat{x} is the unique minimizer of E(., y);
- (b) for every $J \subset \{1, \ldots, p-1\}$, there is a subset $\tilde{O}_J \subset \mathbb{R}^q$, composed of $2^{n-\#J-1}$ unbounded polyhedra of \mathbb{R}^q , such that for every $y \in \tilde{O}_J$, the minimizer \hat{x} of E_y satisfies $\hat{x}_i = \hat{x}_{i+1}$ for all $i \in J$ and $\hat{x}_i \neq \hat{x}_{i+1}$ for all $i \in J^c$. Moreover, their closure forms a covering of \mathbb{R}^q .

 $\Rightarrow \forall J \subset \{1, \dots, p-1\}$ $\Pr(\hat{X}_i = \hat{X}_{i+1}, \forall i \in J) \ge \Pr(Y \in \tilde{O}_J) > 0.$

 \Rightarrow \hat{x} are composed of constant pieces.

However, the prior model yields $Pr(X_i = X_{i+1}) = 0$ for every $i \in \{1, \ldots, p-1\}$.

4. Non-smooth at zero noise models

Y = AX + N where $N_i \sim f_N$ are i.i.d.

$$f_N(t) = \frac{1}{Z} e^{-\sigma\psi(t)}$$

 $\psi: I\!\!R o I\!\!R$ is \mathcal{C}^m , $m \ge 2$, on $I\!\!R \setminus \{0\}$ and

$$0 < \psi'(0^+) = -\psi'(0^-) < \infty$$

 $f_{Y|X}(y|x) \propto \exp(-\sigma \Psi(x,y))$

$$\Psi(x,y) = \sum_{i=1}^{q} \psi(a_i^T x - y_i)$$

If $N \sim \text{Laplacian i.i.d.}$ noise $\Rightarrow \Psi(x, y) = ||Ax - y||_1^1$ Notice $\Pr(N_i = 0) = 0$ for every $i \in \{1, \dots, q\}$

Let $X \sim \text{Gibbsian}$ where $\Phi : I\!\!R^p \to I\!\!R$ is \mathcal{C}^m

The MAP \hat{x} minimizes

$$E_y(x) = \Psi(x, y) + \beta \Phi(x), \quad \beta = \frac{\lambda}{\sigma}$$

Generalized Gaussian Markov chain under Laplace noise

X — Markov chain, $X_i - X_{i+1} \sim f_{\Delta X}$ are i.i.d.

$$f_{\Delta X}(t) = \frac{1}{Z} e^{-\lambda |t|^{\alpha}}$$

Y = X + N where N_i , $1 \le i \le p$ are i.i.d. with $f_N(t) = \frac{\sigma}{2}e^{-\sigma|t|}$

$$f_{X|Y}(x|y) = \exp\left(-\sigma E_y(x)\right)\frac{1}{Z}$$
$$E_y(x) = \sum_{i=1}^p \left|x_i - y_i\right| + \beta \sum_{i=1}^{p-1} |x_i - x_{i+1}|^{\alpha} \text{ where } \beta = \frac{\lambda}{\sigma}.$$

Notice $x_i \neq y_i$ for all i

The MAP \hat{x} contains 93% samples satisfying $\hat{x}_i = y_i$.

The same experiment 1000 times

 $\hat{x}_i = y_i$ for 87% of the samples in all trials \Rightarrow most of the samples \hat{x}_i keep the noise intact

Main analytical result and statistical interpretation

Theorem [Nikolova2001] Given $y \in \mathbb{R}^q$, suppose that $\hat{x} \in \mathbb{R}^p$ is such that for $J = \left\{ i \in \{1, \ldots, q\} : a_i^T \hat{x} = y_i \right\}$ and $K_J = \{u \in \mathbb{R}^p : a_i^T u = 0 \ \forall i \in J\}$ we have: (a) the set $\{a_i : i \in J\}$ is linearly independent;

(b)
$$DE_y|_{\hat{x}+K_J}(\hat{x})u = 0$$
 and $D^2E_y|_{\hat{x}+K_J}(\hat{x})(u,u) > 0$, for every $u \in K_J \setminus \{0\}$;

(c)
$$\delta E_y(\hat{x})(u) > 0$$
, for every $u \in K_J^{\perp} \setminus \{0\}$.

Then E_y has a strict (local) minimum at \hat{x} . Moreover, there are a neighborhood $O_J \subset \mathbb{R}^q$ containing y and a \mathcal{C}^{m-1} function $\mathcal{X} : O_J \to \mathbb{R}^p$ such that for every $y' \in O_J$, the function $E_{y'}$ has a (local) minimum at $\hat{x}' = \mathcal{X}(y')$ and that the latter satisfies

$$\begin{aligned} a_i^T \hat{x}' &= y_i' & \text{if} \quad i \in J, \\ a_i^T \hat{x}' &\neq y_i' & \text{if} \quad i \in J^c \end{aligned}$$

Hence $\mathcal{X}(y') \in \hat{x} + K_J$ for every $y' \in O_J$.

Weak assumptions: Pr that (a) fails =0, (b)-(c) sufficient conditions for a strict local minimum.

Crucial: O_J contains an open subset of $I\!\!R^q$

$$\Pr\left(a_i^T \hat{X} - Y_i = 0\right) \ge \Pr\left(Y \in O_J\right) = \int_{O_J} f_Y(y) dy > 0 \quad \forall i \in J$$

For all $i \in J$, the prior has no influence on the solution and the noise remains intact This contradicts the noise model since

$$\Pr\left(a_i^T X - Y_i = 0\right) = \Pr\left(N_i = 0\right) = 0, \quad \forall i$$

Let A invertible and Φ Gibbsian

$$O_{\infty} = \left\{ y \in \mathbb{R}^{p} : \|D\Phi(A^{-1}y)\| < \frac{\psi'(0^{+})}{\beta} \min_{\|u\|=1} \sum_{i=1}^{p} |a_{i}^{T}u| \right\}$$
$$\Pr(A\hat{X} = Y) \ge \Pr(Y \in O_{\infty}) > 0.$$

Amazing: on
$$O_{\infty}$$
 the prior has no influence on the solution

$$y \in O_{\infty} \quad \Rightarrow \quad a_i^T \hat{x} = y_i, \quad \forall i$$

A Laplace noise model to remove impulse noise

$$E_y(x) = \sum_{i=1}^p |x_i - y_i| + \frac{\beta}{2} \sum_i \sum_{j \in \mathcal{N}_i} \varphi(x_i - x_j)$$

 φ symmetric \mathcal{C}^1 strictly convex edge-preserving

Bayesian standpoint: Y = X + N with N Laplacian white noise

Previous results: the MAP cannot efficiently clean Laplacian noise (all \hat{x}_i such that $\hat{x}_i = y_i = x_i + n_i$ keep the noise intact while $n_i \neq 0$ almost surely)

What is the noise model which is *effectively* realized by the MAP?

$$\begin{split} E_y \text{ reaches its minimum at a point } \hat{x} \in I\!\!R^p, \text{ for which we define} \\ J &= \left\{ i \in \{1, \dots, p\} : \hat{x}_i = y_i \right\}, \text{ if, and only if,} \\ i \in J \quad \Rightarrow \quad \left| \sum_{j \in \mathcal{N}_i} \varphi'(y_i - \hat{x}_j) \right| \leq \frac{1}{\beta}, \\ i \in J^c \quad \Rightarrow \quad \sum_{j \in \mathcal{N}_i} \varphi'(\hat{x}_i - \hat{x}_j) = \frac{\sigma_i}{\beta}, \quad \sigma_i = \operatorname{sign} \left(\sum_{j \in \mathcal{N}_i} \varphi'(y_i - \hat{x}_j) \right) \in \{-1, 1\}. \end{split}$$

Proposition Let $\beta > 1$ and $\varphi''(t) > 0$ for all $t \in \mathbb{R}$. Choose a nonempty $J \subset \{1, \ldots, p\}$ as well as $\sigma_i \in \{-1, 1\}$ for every $i \in J^c$. Then there are $y \in \mathbb{R}^p$ and $\rho > 0$ such that if O_J reads

$$O_{J} = \left\{ y' \in \mathbb{R}^{p} : \left| \begin{array}{cc} |y'_{i} - y_{i}| \leq \rho & \forall i \in J \\ \sigma_{i} y'_{i} \geq \sigma_{i} y_{i} - \rho & \forall i \in J^{c} \end{array} \right\}$$

then for every $y' \in O_J$ the function $E_{y'}$ reaches its minimum at an $\hat{x}' \in \mathbb{R}^p$ such that

$$\hat{x}'_i = y'_i \quad \forall i \in J,$$

 $\hat{x}'_i = \mathcal{X}_i(\{y'_i : i \in J\}) \quad \forall i \in J^c,$

where $\mathcal{X}_i, i \in J^c$ are continuous functions that depend only on y'_i for $i \in J$.

- $\Pr(Y \in O_J) > 0$ since O_J contains an open of \mathbb{R}^p
- O_J are disjoint, hence

$$\Pr(\hat{X}_i - Y_i = 0) \ge \sum_{J: i \in J} \Pr(Y \in O_J) > 0, \quad \forall i$$

- Contradicts the Laplacian noise model involved in E_y : $Pr(X_i Y_i = 0) = 0$, $\forall i \in \{1, \dots, p\}$
- The data samples y'_i, i ∈ J are fitted exactly, hence they must be free of noise.
 Otherwise i ∈ J^c and y'_i is replaced by the estimate x'_i = X_i({y'_i : i ∈ J})
 Hence y'_i, i ∈ J^c is *outlier* and can take any value on the half-line contained in O_J.
- The MAP estimator defined by E_y corresponds to an impulse noise model on the data

5. Priors with non-convex energies

Y = AX + N with $N \sim \text{Normal}(0, \sigma^2 I)$ and a Gibbsian prior with a nonconvex Φ

$$\Phi(x) = \sum_{i=1}^{r} \varphi(g_i^T x) \tag{1}$$

 g_i difference operators

 $\varphi \begin{cases} \text{symmetric, } \mathcal{C}^2 \text{ and increasing on } (0, +\infty) \text{ with a strict minimum at zero} \\ \text{and } \exists \ \theta > 0 \text{ such that } \varphi''(\theta) < 0 \text{ and } \lim_{t \to \infty} \varphi''(t) = 0 \text{ (nonconvex)} \end{cases}$

The MAP \hat{x} yields the (global) minimum of

$$E_y(x) = \|Ax - y\|^2 + \beta \Phi(x), \quad \beta = 2\sigma^2 \lambda$$

Since [Geman²1984] various nonconvex φ to produce \hat{x} with smooth regions and sharp edges.

Piecewise Gaussian Markov chain in Gaussian noise

The piecewise GM chain = discrete 1D Mumford-Shah model = the weak-string model X such that $X_{i+1} - X_i$ are i.i.d. $\sim f_{\Delta X}(t) \propto e^{-\lambda \varphi(t)}$

$$\varphi(t) = \begin{cases} \alpha t^2 & \text{if } |t| < \sqrt{\frac{1}{\alpha}} \\ 1 & \text{else} \end{cases} = \min\{\alpha t^2, 1\}$$

 $\Phi(x) = \sum_{i=1}^{p-1} \varphi(x_i - x_{i+1})$

Theorem [Nikolova 2000] Define $u_i \in \mathbb{R}^p$ by $u_i[j] = 0$ if $1 \le j \le i$ and $u_i[j] = 1$ if $j \ge i + 1$ (step), and $P = I - \frac{A \mathbb{1} \mathbb{1}^T A^T}{\|A\mathbb{1}\|^2}$ (projection). If E_y has a global minimum at \hat{x} , then $\forall i \in \{1, \ldots, p-1\}$

either
$$|\hat{x}_i - \hat{x}_{i+1}| \le \frac{1}{\sqrt{\alpha}} \Gamma_i$$
 or $|\hat{x}_i - \hat{x}_{i+1}| \ge \frac{1}{\sqrt{\alpha}} \Gamma_i$

 $\Gamma_i = \sqrt{\frac{\|PAu_i\|^2}{\|PAu_i\|^2 + \alpha\beta}} < 1.$ In particular, $\hat{x}_i - \hat{x}_{i+1} = 0$ if $PAu_i = 0.$

$$\Rightarrow \qquad \Pr\left(\frac{\Gamma_i}{\sqrt{\alpha}} < |\hat{X}_i - \hat{X}_{i+1}| < \frac{1}{\sqrt{\alpha}\Gamma_i}\right) = 0$$

whereas a priori
$$\qquad \Pr\left(\frac{\Gamma_i}{\sqrt{\alpha}} < |X_i - X_{i+1}| < \frac{1}{\sqrt{\alpha}\Gamma_i}\right) > 0$$

26

We repeat 200 times the following experiment:

- generate X = x of length p = 300 where $x_i x_{i+1}$ are sampled from $f_{\Delta X}$ for $\alpha = 1$, $\lambda = 5$ and $\gamma = 15$
- y = x + n where $n \sim \text{Normal}(0, \sigma^2 I)$, $\sigma = 4$
- compute $\hat{x} = \arg \min E_y$ for the true parameter $\beta = 2\sigma^2 \lambda = 160$.

 $x_i - x_{i+1}$ (up) and zoom (bottom).

true MAP solutions \hat{x} (up) and zoom (bottom).

MAP for smooth at zero functions φ

Additional assumption: φ is C^2 and $\exists \tau > 0, T \in (\tau, \infty)$ such that $\varphi''(t) \ge 0$ if $t \in [0, \tau]$ and $\varphi''(t) \le 0$ if $t \ge \tau$, where φ'' is decreasing on (τ, T) and increasing on (T, ∞)

 $G \in I\!\!R^{r \times p}$, row $i = g_i^T$

 e_i — the *i*th vector of the canonical basis of $I\!\!R^p$

Theorem [Nikolova05] Let rank G = r and $\beta > \frac{2\|A^T A\|}{|\varphi''(\mathcal{T})|} \max_i \|G^T (GG^T)^{-1} e_i\|^2$. Then $\exists \theta_0 \in (\tau, \mathcal{T}) \text{ and } \exists \theta_1 \in (\mathcal{T}, \infty) \text{ such that } \forall y, \text{ every minimizer } \hat{x} \text{ of } E_y \text{ satisfies}$

either
$$|g_i^T \hat{x}| \le \theta_0$$
, or $|g_i^T \hat{x}| \ge \theta_1$, $\forall i \in \{1, \dots, r\}$

$$\Rightarrow \quad \Pr\left(\theta_0 < |g_i^T \hat{X}| < \theta_1\right) = 0, \quad \forall i \in \{1, \dots, r\}$$

The prior model effectively realized by the MAP estimator corresponds to images and signals whose differences are either smaller than θ_0 or larger than θ_1 .

Different from the prior since $\Pr\left(\theta_0 < |g_i^T X| < \theta_1\right) > 0$, $\forall i \in \{1, \dots, r\}$.

MAP for non-smooth at zero functions φ

Additional assumption : $\varphi'(0^+) > 0$ and that φ'' is increasing on $(0,\infty)$ with $\varphi''(t) \le 0$, $\forall t > 0$

Theorem There is a constant $\mu > 0$ such that if $\beta > \frac{2\mu^2 ||A^T A||}{|\varphi''(0^+)|}$, then there exists $\theta_1 > 0$ such that for every $y \in \mathbb{R}^q$, every minimizer \hat{x} of E_y satisfies

either
$$|g_i^T \hat{x}| = 0$$
, or $|g_i^T \hat{x}| \ge \theta_1$, $\forall i \in \{1, \dots, r\}$.

If $|\varphi''(0^+)| = \infty$ the condition is $\beta > 0$.

The alternative holds for any realization Y = y. Hence

$$\Pr\left(|g_i^T \hat{X}| = 0\right) > 0,$$
$$\Pr\left(0 < |g_i^T \hat{X}| < \theta_1\right) = 0.$$

(The sample space of \hat{X} is disconnected and semi-discrete)

If $\{g_i, 1 \le i \le r\}$ — first-order differences between neighbors, every minimizer \hat{x} of E_y is composed out of constant patches separated by edges higher than $\theta_1 \equiv$ the effective prior model realized by the MAP

Disagreement with the prior f_X for which $\Pr\left(|g_i^T X| = 0\right) = 0$ and $\Pr\left(0 < |g_i^T X| < \theta_1\right) > 0$

- x̂ is constant on many pieces which are separated by large edges.
 Its visual aspect is fundamentally different from the original x
- x does not involve constant zones and its differences take any value on $[-\gamma, \gamma]$.

6. Conclusion

 MAP estimators do not match the underlying models for the production of the data and for the prior

Experimental demonstration and theoretical explanation

Embarrassing... the problem of β never solved

- Based on some analytical properties of the MAP solutions, we partially characterize the models that are *effectively realized by the MAP solutions*.
- Conjecture: similar problems generally arise with other Bayesian estimators too.
- Combining models is an open problem
- Papers available at http://www.cmla.ens-cachan.fr/ nikolova/