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1. Energy minimization methods

1.1 The energy method
Uo (unknown) v (data) = Transform(uo)+n (noise)

signal, nice picture, density map dirty blurred picture, degraded transformed map

" close to data

solution
N\, coherent with priors and desiderata
@ = argmin F,(u) Q - constraints
ue2
Fo(u) = ¥(u,v) + BP(u)
energy data-fidelity prior

Related formulation: minimize {(I)(fu,) such that u € Q, ¥(u,v) < ’T}
B = B(7) > 0 - Lagrange parameter

Applications: Denoising, Segmentation, Deblurring, Tomography, Seismic imaging,
Zooming, Superresolution, Compression, Learning, Motion estimation, etc.
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1.2 Background to define energies
W—model for the observation instrument and the noise
In most cases W(u,v) = ||Au — v||?, A linear (favored by feasibility)

History: @ = argmin, ||Au — v||® unstable if A ill-conditioned, if A = I then & = v

Fo(u) = ||Au — v]||? + B||u||? [Tikhonov &Arsenin 77] (stable but too smooth)
U is a degradation model, good prior is needed to compensate for the loss of information

$d—model for the unknown u (statistics, smoothness, edges, textures, expected features)
- Bayesian approach ®(u) =, ¢(||Giul||)
- Variational approach  ®(u) = [, ¢(||Vu||)dx
¢ : Ry — R, — potential function (PF)

Both approaches lead to similar energies
Well-known difficulties to control the solution
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Customary functions ¢ where o > O—parameter

Convex PFs

©(|t]) nonsmooth at 0 < ¢'(0)> 0

©(|t]) smooth at zero ©(|t]) nonsmooth at zero
e(t) =1t%, 1<a<2 p(t) =t
p(t) = Va2
Nonconvex PFs

©(|t]) smooth at zero ©(|t]) nonsmooth at zero
©(t) = min{at?, 1} pt)=t% 0<a<l

2
el =1 ita# )= jtat
o(t) =1 — exp (—at?) ©(0)=0, @(t)=1if t£0

@ is increasing on R with (0) =0

o) _ g

@ is edge-preserving if lim - a frequent requirement

t— oo

©(t) = min{at?, 1} - discrete version of Mumford-Shah

Lo-norm: ||ullg = #{i : u; # 0} = ng(uz) for p(0)=0, @(t)=1if t#0
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1.3 Minimizer approach
(the core of this plenary)

Analysis of the main features exhibited by the (local) minimizers @ of JF, as a function of
the shape of F,,

e Point of view able to yield strong results on the solutions

(not yet explored in a systematic way)

e Focus on specific features of F, (non-smoothness, non-convexity, others)

= A new rigorous approach for modeling:

Choose F, so that the properties of & match the models for the data and the unknown



Data (—. — .—), Minimizer (—)

Illustration: the role of the smoothness of F,

STAIR-CASING

EXACT DATA-FIT

D p—1
Fow) = (ui—vi)* + B |us — uiy1]
i=1 i=1

smooth non-smooth

Z\uz — vy +6Z P — Uit1)?

non-smooth smooth
D
fv(u):Z(uz_Uz +/BZ(U’L_U”L—|—1)2
i=1
smooth smooth



2 Regularity results

( Fow) = [|Au—o|? + BB(u)

foru € RP, v € R4
®(u) = > o(IGsul) ’
1=1

We focus on

- /

{G;} linear operators RP — R*, s > 1 (typically s=1or s =2, e.g. G; = V;)

If ¢’(0) >0 = & is nonsmooth on |J, {u: Gu =0}

Remind:

F, has a (local) minimum at & = J0F,(0()(d) = lim Fo(uttd)—Fy(u)

>0, Vd € RP
t]0 t

Definition: U : O — RP, O C RY open, is (strict) local minimizer function if
Vv € O, F, has a (strict) local minimum at U (v)

JF nonconvex = there may be many local minima
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2.1 Stability of the minimizers of F, [Durand &Nikolova 06]

Assumptions: ¢ : R, — R is continuous and C™=2 on R, \ {0, 05....}, edge-preserving,
possibly non-convex and rank(A) = p

A. LOCAL MINIMIZERS

(knowing local minimizers is important)

We prove that there is a closed subset N C R? whose Lebesgue measure is LY(IN) = 0
such that Vv € R? \ NN, for every local minimizer @ of F,,, there is a C™ ! strict local
minimizer function U : O — RP, with O C R?%—open, such that v € O C R? and

u = U(v).

MORE PRECISIONS

® smooth

Vv €R2\ N, every local minimizer @ of F,, is strict and V2F, (@) = O (positive definite)



® piecewise smooth

Notations: h = {z : G,u = O} and K; = {'w eERP:G;,w =0,V € ﬁ}
Notice that F,, is smooth on K; near u € Kj

Vv €RI\ N, every local minimizer @ of JF, is strict and fits the Sufficient Condition (SC)

V]-'v{KA (1) =0, V?F,|k, (@) > 0 (SC fora strict minimum on Kj)
h
0F,(1)(w) >0, Yw € K,AJL' \ {0}  (SC for a strict minimum on K}f)

B. GLOBAL MINIMIZERS

We prove that there is a subset N C R? with LI(IN) = 0 and Int(R?\ N) dense in R?
such that Vv € R? \ N, F, has a unique global minimizer.

Moreover, there is an open subset of R? \ N, dense in RY, where the global minimizer
function I/ is C™~'-continuous.
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2.2 Nonasymptotic bounds on minimizers [Nikolova 07]

Classical bounds hold for 3 \, 0 or 3 ~ o
Assumptions: ¢ is Ct on Ry with ¢’(t) > 0, YVt > 0 or ¢(t) = min{at?,1}

Notations: 1 = [1,..,1] and G = [GT,...,G}]* where * means transposed

A. BOUNDS ON RESTORED DATA A

If rank(A) =p or ¢'(t)>0,Vt>0, then every local minimizer @ of F, satisfies
|Aall < o]
If rank(A) = p, ¢'(t) > 0,Vt > 0 & kerG = span(1), then IN C R? with LY(IN) = 0,
Vo € RT\ N, [Ad] <[]

Remind: if {G;u}l_, are discrete gradients or 1lst-order differences, then kerG = span(1)
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B. THE MEAN OF RESTORED DATA

Usually mean(noise)=mean(Au — v)=0.
If A1, < 1, and 1, € ker(G), then mean(Ad —v) = 0 u € RP, v e R

However, in general mean(Ad — v) # 0.

C. RESIDUALS FOR EDGE-PRESERVING REGULARIZATION

Additional assumption: ¢ o = sup |¢'(t)| < oo (¢ edge-preserving)
0<t<oo

If rank(A) = ¢, then for every v € RY, every local minimizer @ of JF,, satisfies

lv — Adfl, < 5 [1¢'lleo [|[(AA") A NG

oo — 2

We can always take [|¢"||coc = 1. Then
o Signal (IG1 =2) and A=1 = |l —all, <8

o Image (|G]li =4)and A=1 = |lv—1d|_ <20
Surprising?
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3 Minimizers under Non-Smooth Regularization

3.1 General case [Nikolova 97,01,04]

Consider | F,(u)=U(u,v)+8) ¢(||Gsull) for ¥eC™>2 peC™(R?), 0<¢’(0) <oo
=1

(Assumptions) If @ is a local minimizer of F,, then 3 O C R? open, v € O, IU € C™ 1
G;u' =0 if 1€ il,

v/ € O = F, has a (local) minimum at @’ = U(v’) and .
G;,u’ A0 if 1 € h€

where h = {i : G;4 = 0}

By § 2.1: if U(u,v) = ||Au — v||*, rank(A) = p = assumptions hold Vv € R? \ N

hc{l,.,r} O, C{veR:GUW)=0, Vich} | = L1(O;) >0

[Data v yield (local) minimizers @ of F, such thatJ

G;u = 0 for a set of indexes h

A

G; ~V,, = h =constant regions = stair-casing: ; = 4  for many neighbors (2, )
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1 100 1 100 1 100 1 100

go(t)z% if t<a, go(t):ozt—%z if t>a (smooth)

p(t) = [t| p(t) = alt]/(1 + aft])
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O; FOR HARD THRESHOLDING

Fo(u) = [[u —ol[g + Bllullo, a=>1

Z/[,i(’l]): 0 if |’Ui‘o‘ Sﬁ _ iL:{i:Ui(”U):O}:{ii |/Ui|a§ﬁ}
V; if |Ui‘a > B

Op ={veRT: |v;|* < B,Vi € h, |v5|* > B,Vi € h¢}; RI = JO,
h
Data yielding K-sparse solutions: Sg ={v e R?: ||allo < K} = U On

hi#h<K
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3.3 Measuring the sparsest approximations [Malgouyres & Nikolova 08]

The most economical way to represent data v in a frame W ={w,} — find @& that solves

min ||u||o subject to |[> , w,w; —v|| <7, 7>0, |.|| a norm

Sk={v € R?: ||u|lo < K} - all data yielding a K-sparse solution.
Dy ={v e R?: f(v) <0} where f is a norm. We derive

Cx (g)q_K 07 (1-07) = 0%(K,7,0) < LU(Sx N Do) < Cxs (%)Q_K 0 (1+67)

C'x depends on (||.||, f, W), while § depends on (||.||, f) (explicit formulae for C'x, §)

Typically T < 6 and then L4(Sx NDy) = Cxc (5)* 69+ 6 0 ((5)*")

Assumption: data v are uniform on Dy, then Proba(||u|lp < K) = H"Z?ﬁ%ﬂ”

Goal: build a coder——choose ||.|| and W—such that

Proba(||t||p < K) is large if K < q and small if K — ¢

16



3.4 Recovery of Quasi-Binary images and signals [Nikolova 98]

e The sought image is binary u € {0,1}P, datav = Au-+n

Classical approach: Binary Markov models = calculation troubles

(direct calculation is infeasible, SA approximation is costly, ICM vyields poor solutions)
Surrogate methods (convex criteria, median filtering) - unsatisfactory

Graph-cuts : difficult if A # identity

e Instead, define continuous-valued quasi-binary minimizers of convex F, :

discourage nonbinary values & enforce stair-casing

minimize F, subject to u € [0,1]”  (convex constraint)
1)? <
Fo(w) = 3 (4w =07 3 (wi= 3) 8 3w = w7 S Amin(4)
i i JEN;

Applications for blind channel estimation [Alberge, Nikolova, Duhamel 02, 06]
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0 1

Original image u Proposed method  Histogram(solution)

Vall Val

0 1

Original image v~ Data =wu+salt &pepper  Proposed method  Histogram(solution)
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4 Minimizers relevant to non-smooth data-fidelity

4.1 General case [Nikolova 01,02]

q

> Y([{as, u)—v|)+B®(u) for eC™, peC™Ry), ’'(0) >0

1=1

Consider | F(u)

(Assumptions) If @ is a local minimizer of F,, then 3 O C R? open, v € O, 3U € C™ 1
(a;, ') =v;, i€ h

v/ € O = F, has a (local) minimum at @ = U(v") and A
(a;, ") # viy, 1 € h°

where h = {2 : (a;,4) = v;}

hcC{1,.,q} O; = {fv € R?: {(a;,U(v)) = v;, Vi € ﬁ} = L9(0;) >0

[ Noisy data v yield (local) minimizers @ of F, which achieve an ]
=
C

xact fit to data (a;, ) = v; for a certain number of indexes %
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4.2 Detection and cleaning of outliers using £; data-fidelity [Nikolova 04]

Folw) =3 fui =il +5 37 3 (s — ) N

©
i=13FEN; ®
©

O © O

O

©: smooth, convex, edge-preserving

data v contain uncorrupted samples v;

Assumptions:
v; is outlier if |v; —v;| > 0, Vj € N
v €ERP = u=arg mJn.’Fv(u) v; Is regular if 2 € h
h={i:a; =v;} v; is outlier if 4 € h°
Outlier detector: v — h¢(v) = {i : 4; # v;}
Smoothing: @; for i € h© = estimate of the outlier

Justification based on the properties of u
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Recursive CWM (||t—uo||2 = 3566) PWM (|l —uo||2 =3984) Proposed (||t —uol|2 = 2934)
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4.3 Recovery of frame coeflicients using £; data-fitting [Durand &Nikolova07,08]

- Data: v = wu, + noise; if multiplicative noise: v = log(data) = log(image) + log(noise)

- Noisy frame coefficients y = Wv = Wu,+ noise

. . . )0 iffy ST
- Hard thresholding can keep relevant information if 7" small yr, = _
y; iflyi| >T
- Hybrid methods—combine fitting to yr with prior ®(w)
Different energies [Bobichon &Bijaoui 97, Coifman &Sowa 00, Durand &Froment 03...]
minimize F,(x) = Ail(x — i +/ VW*x
S @) =A@~ vl + [ e(9Wa)
u = W*Z, where W* left inverse
Rationale:
Keep &; = yr; Restore &; # yr;
significant coefs y; =~ (Wwuo); outliers  |y;| > |(Wuo);| (frame-shaped artifacts)

thresholded coefs if (Wuo); =0 edge coefs |(Wuo):|>|yr;|=0 (“Gibbs" oscillations)
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Original and data

100

1 250 500

Total variation

100+

100+

250

Sure-shrink method

500

250

Data yr, T = 23

500

100

100

250 500

[N

Hard thresholding

250 500

[N

—— The proposed method

Restored signal (—), original signal (- -).
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Original Additive noise TV Optimal T'=100 Our data T=50 Our method

Multiplicative noise  Noise model4+TV  Our+Daubechies8  Our+Contourlets Original
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4.4 Fast Cleaning of Noisy Data From Impulse Noise [Nikolova 03 and 08]
minimize F,(u) = ||lu — v||1 + B||Gul|?

Very fast minimization scheme (no line search)

Semi-explicit expressions for the minimizer

-1 0 1

Proposed method Hist(4 — u,)

27



4.5 Fast 2-stage restoration under impulse noise [Chan, Nikolova et al. 04, 05, 08]

1. Approximate the outlier-detection stage by rank-order filter
Corrupted pixels h¢ = {i:9; # v;} where =Rank-Order Filter (v)
- Salt &Pepper (SP) noise e.g. by adaptive median

= improve speed and accuracy
- Random-Valued (RV) noise e.g. by center-weighted median

2. Restore 4 (denoising, deblurring) using an edge-preserving variational method
subject to (a;, u) = v; for all ¢ € h = Fast optimization, pertinent initialization

50% RV noise ACWMF DPVM Our method
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70 %SP noise(6.7dB) MED (23.2 dB)

Adapt.med.(25.8dB) Variational (24.6) Our method(29.3dB) Original Lena




5. Nonsmooth data-fidelity and regularization

G;a=0 for i€ hy, £0

Consequence of §3 and §4: if ® and ¥ non-smooth, A
(aj, ) =v; for 1€ hy #0

5.1 Binary images by L1 data-fitting and TV [Chan, Esedoglu, Nikolova06]

Classical approach to find a binary image 4 = g from binary data 1, Q C R?

A

> = arg miiln{H]lg — 1g|j5 + 8TV(1x)} nonconvex problem

= arg mgn{Surface(E A Q) 4 PPer(X%)} usual techniques (curve evolution, level-sets) fail

(symmetric difference)

We reformulate the problem so that the desired solution minimizes a convex problem
Fo(u) = [lu — 1g|l1 + BTV (u)}

Then F,(u) is solved for @ = 14

= Convex algorithm for finding the global minimum

30



5.2 One-step real-time dejittering of digital video [Nikolova 08]
Image u € R"*€, rows u;, pixels u;(7)
Data ’lJz(j) = ’u,,,,(] -+ d,,,), d; integer, ‘dz’ < M

Restore 4 = restore cii, 1<:1<r

Our approach: restore 4; based on (ﬁ,,;_l, ’&i—z) by d; = arg min F(d;) where

|d: |[<IN
c— N
F(di)= > |vi(§ +di) — 2ai-1(j) + @i-2()|", a€(0.51], N>M
Jj=N+1

piece-wise linear model for the columns of the image

Jittered, [—20, 20] a=1 Jitter: 6sin (%) a=1 = Original
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Jitter {-15,..,15} . Original image




Jitter {-10,..,10} a=0.5

Comparison with Smooth Energies

Original image

[Nikolova 04]

We show that if Fyp(u) = V(u,v) + fP(u) is smooth = for a.e. v € RY

G;u £ 0, Vi and

34
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7 Non-convex regularization

[Nikolova 04]

Folu) =[|Au —v|> + B8)_¢(||Giul))

=1

Standard assumptions on ¢: C? on Ry and lim ¢”(t) = 0, as well as:

@’ (0) = 0 (P is smooth)

(1) = at?
AT
>0 p"(t)
TT
; W increase, <0

35
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6.1 Either shrinkage or enhancement of differences

ILLUSTRATION ON R

Fo(u) = (v —v)* + Bep(lul), u,v€R

u+ 2 (u) wt B (u) No local minimizer in (6¢,601)

1)~
) §1y § 3& >0, & > &
’ o [v| < &1 = || < 6o

0o 01 00 0 strong smoothing
lv| > &0 = |G| = 61

loose smoothing

©'(0)=0 ©'(0) >0

lv] < € = global minimizer = 4p (strong smoothing)
= 5 € (50751)

|lv| > € = global minimizer =4y,  (loose smoothing)
For v = & the global minimizer jumps from g to 447 = decision for an “edge”

Since [Geman?1984] various nonconvex ® to produce minimizers with smooth regions and
sharp edges
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Sketch : if @ is a (local) minimizer of F,, then 309 > 0, 307 > 6O¢ such that
ho = {i:||Giall <60} hy={i:||Gial >6:} with hoUhy={1,...,7}

homogeneous regions edges G;:ief{l,...,r}

(A) ¢ nonconvex and ¢'(0) = 0, GG™ invertible, 3>K(A,G, ) then 30y € (7,7) and
1601 > T > 6y such that either ||G;ul| <6y or ||Gul|l > 601, Vi

(B) ¢(t) = min{at?,1} and F, has a global minimum at @ then 3 T'; € (0, 1) so that

A A 1
Ujr1 — Uj| =

I';

Ja

either "fbi+1 — U
(C) ©’(0) > 0 (P nonsmooth and nonconvex), 8 >K(A, G, ¢), then 307 > 0 such that

either ||G;a|| = 0 or ||G;a|| > 01, Vi = fully segmented image, high sparsity

(D) (o) : ¢(0)=0, p(t)=1,t#0 and F, has a global minimum at @ then 3 T';:

Uit1 — Uj| 2 @

either fLALZ'_|_1:’LALZ' or

Explicit formula for I';, bounds for 6y and 6,
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IMAGE RECONSTRUCTION IN EMISSION TOMOGRAPHY

N
L\ Y 4

¢ is smooth (Huber function) o(t) =t/(a+t) (non-smooth, non-convex)

Reconstructions using F,(u) = ¥(u,v) + 52 @(|u; —uj]), ¥ = smooth, convex

1~
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6.2 Selection for the global minimizer

Additional assumptions: ||¢||s < 0o, {G;}—1%*-order differences, A* A invertible

1 1 fie ¥ C{1,.,p} Original: wu, = &lls, £>0
=i =
0 else Data: v=§¢& Als = Au,

u = global minimizer of F,
In each case we exhibit 4 & > 0, d & > &op:

e Case (A) - ® smooth: &£ < &y = t—smooth, £ > & = t—perfect edges

4
< = 1 = regularized least-squares (no edges
f > fl = U= Uo
\

(
£ <& = U =constant

e Case (C) - ® nonsmooth: < A . _
E>§& = U =cu,, c<1, limc=1if X connected

\ E—00

® (ﬁo) : @(0)207 Sp(t)zl,t#(): €< 50 = U =constant
§>&6 = U =1u,
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6.3 Comparison with Convex Edge-Preserving Regularization

i

1 100 1 100 1 100

Data v = uo +n p(t) = [t p(t) = alt|/(1 + alt])

o If F, is convex, then ||G;u|l can take any value on R

TV (non-smooth) creates constant zones, a fortiori these are separated by edges

e Edge-recovery using a non-convex ¢ is fundamentally different: it relies on the
competition between different local minima corresponding to different edge
configurations. At a v where the global minimum jumps from one local minimum to

another, v — U(v) is discontinuous.

Illustration of all properties
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Original image Data v

Datav=axu-+n a—>blur

n—white Gaussian noise SNR=20 dB

o) = at?/(1+at?) o) =altl/(L+alt) @) = min{at?,1}  o(t) = 1 - Loy
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7 Models are distorted by Bayesian MAP [Nikolova 07]

7.1. MAP estimators to combine noisy data and prior

Bayesian approach: U, V random variables, events U = u, V = v

Likelihood fyyir(v|u), Prior fu(u) o< exp{—A®(u)}, Posterior fuy (ulv) = fuyr(viw)fu(u)+

MAP 4 = the most likely solution given the recorded data V = v:
i = argmaxy fyy (ulv) = argmin, (—In fyp(vju) — In fu(u))
= argmin, (¥(u,v) + BP(u))

MAP is the most frequent way to combine models on data-acquisition and priors

Realist models for data-acquisition fyyy and prior fu
= @ must be coherent with fy i and fu

In practice one needs that:

U~ fu N fo = fu
AU =V ~ fn fo~fn, N~ AU -V

Our analytical results show that both models ( fy;i and fu) are deformed in a MAP estimate
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7.2 Example: M AP shrinkage [Simoncelli99, Belge-Kilmer00, Moulin-Liu00, Antoniadis02]
e Noisy wavelet coefficients y=Wv=Wu,+n, n~N(0, 0'21), True coefficients £ =W,

e Prior: x; arei.id., ~ f(x;) = %e‘klxila (Generalized Gaussian, GG), fx(x)= Hf(a:z)

Experiments have shown that o € (0, 1) for many real-world images

e MAP restoration & &; = arg rtneiél((t — yi)? + X|t]Y), Vi

(a, A\, o) fixed—10000 independent trials:
(1) sample  ~ fx and n ~ N(0,0°), (2) form y = 2 4+ n, (3) compute the true MAP %

50 500
5000
250 250
0 -10 0 10 0 -10 0 10 o -10 0 10

GG, a=12,)\= % The true MAP GG, a = % A =2 True MAP 2

0*2 o] 2

Noise N(0,0?) Noise estimate Noise N(0,0?) Noise estimate
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7.3. Theoretical explanations )

V = AU + N and fy|v continuous = ¢ Pr({(a;u =v;) =0, Vi
\ PI‘(QO < HGZ’LLH < (91) >0, 0g <0y, Vi

The analytical results on @ = arg minF, (u) =MAP (sections 3, 4 and 7) yield:

e fu non-smooth at 0 & ¢’(0) > 0
veO; = |Gl =0,Vic ﬁ] = Pr(Gii=0,Viech) > Pr(ve ;)= [ fv(v)dv> 0

The effective prior model corresponds to images and signals such that G;u = 0 for a certain

number of indexes i. If {G;}=first-order, it amounts to locally constant images and signals.

e fn nonsmooth at 0 & 4'(0) > 0
veO; = [(ai,@ =v; Vi€ iz} = Pr ((ai,@ = v;, Vi € il) >Pr(VeO;)>0

For all @ € ﬁ, the prior has no influence on the solution and the noise remains intact.

The Effective model corresponds to impulse noise on the data.

¢ — In fyy nonconvex < ¢ nonconvex = Pr (90 < 1GiU|| < 01) =0, Vi

Effective prior: differences are either smaller than 6y or larger than 6.
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e — In fiy nonconvex, nonsmooth at 0 = Pr (HG{&H :O) > 0, Pr (O< |Gt <91) =0

If {G; }—first-order—effective prior for signals and images composed of constant zones

separated by edges higher than 6;.

Illustration: Original differences U; — U; 1 i.i.d.~ fay(t) oc e (1) on [—v,4], (t) =

1 50 100 1 50 100

Original u, (—) by fay fora =10, A=1, v =4 The true MAP 4 (—), 8 = 202\
datav=uo+n (---), N ~N(0,0%I), 0 = 5. versus the original uo (- -).

Knowing the true distributions, with the true parameters, is not enough.

[Combining models remains an open problem)
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. Open questions

Analyzing the properties of the minimizers in connection with the shape of the energy
yields strong results

Such results provide a powerful tool for rigorous modeling
Specialized energies can be conceived

Minimization methods can take advantage from the known features of solutions
(oal : conceive solutions that match pertinent models

Open field for research
What “features” and what “properties” ?

Quantify features involving randomness

Papers available on http://www.cmla.ens-cachan.fr/ nikolova/
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