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1. Energy minimization methods and applications '

1.1 The energy method

Uo (unknown) v (data) = Transform(ue)+m (noise)

signal, nice picture, density map dirty blurred picture, degraded transformed map

_ N /" close to data
solution u

N\, coherent with priors

U = argmig Fo(u) Q - constraints
uec
Fo(u) = ¥ (u,v) + B®(u)
energy data-fidelity prior

Related formulation:

minimize {<I>(u) st.u € Q, ¥(u,v) < T} “s.t.” ="subject to”
B = B(7) > 0 - Lagrange parameter

W —based on the model relating ug to v (deterministic and random phenomena)

d—“regularity” requirements (a priori information, expected or imposed features)
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1.2 Problems solved in this way

e Denoising v = uo, + n (often n ~ independent identically distributed (i.i.d.) noise)
e Segmentation wv(data) = wu,(sketch) -+ n(texture &noise)

e Inverse problems—deblurring, tomography; optical, seismic and nuclear imaging...

direct problem v = A(uo) ®n, e.g. “©” = “+”, A blur, Radon transform...

the inverse problem is often ill-posed (Hadamard conditions) = A~!v makes no sense
e Zooming given v find an 4 on a finer grid
e Superresolution given vy,...,v,—low-resolution data, find a high-resolution
e Coding and compression find a (sparse) representation in a frame or a basis
e Shrinkage estimators restore noisy frame coefficients using knowledge on their distribution
e Learning given an input-output training sequence, find a function that explains the system

e Motion estimation, color reproduction and many others
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1.3 Common reasons to define energies

W—Dbased on the model for the observation instrument and the noise

usually {©t : ¥(@,v) = 0} solves the observation equation

History: @ = argmin, ||[Au — v||? unstable if A ill-conditioned, if A = I then 4 = v

Fo(u) = ||Au — v||? 4+ B||u||? [Tikhonov &Arsenin 77] (stable but smooth edges)

In most cases W (u,v) = ||Au — v||®, A linear (favored by feasibility)

[\IJ is a degradation model, cannot compensate for the loss of information, good prior is needed)

®—model for the unknown wu (statistics, smoothness, edges, textures, expected features)
e Bayesian approach ®(u) =) . ¢(l|Giul|)
e Variations, PDE ®(u) = [, e(|Vul|)de

¢ : R+ — Ry— potential function (PF)

Permanent (difficult) requirement—that ¢ enables the restoration of sharp edges in 4



Customary functions ¢ where o > 0—parameter

Convex PFs

0

©(|t]) smooth at zero ©(|t]) nonsmooth at zero #([t]) nonsmooth at 0 < ¢'(0)>
p(t) =1t%, 1<a<2 p(t) =1t
p(t) = Vo +12
Nonconvex PFs
©(|t]) smooth at zero ©(|t]) nonsmooth at zero
©(t) = min{at?,1} p(t)=t* 0<a<l
o= 2 o) = 2
p(t) = log(at® + 1) p(t) =log (at + 1)
o(t) =1 — exp (—at?) ©(0)=0, p(t)=1if t#0

Systematic assumptions

¢ is increasing on Ry with ¢(0) =0

/
t
edge-preserving ¢ satisfy lim SOT()
t— oo

= 0 (= linear growth at infinity)




Bayesian Maximum a Posteriori (MAP)

e U, V random variables, events U = u, V =wv [Besag 89, Tenorio 01]

o Likelihood = fyy(v|u) (physical considerations on data-acquisition)
eg. V=AU+N, {Ni}iid. ~fnv = fuul HfN(az, >—v)

fn

= N(0,6%) = fuu(vu) = % exp {—12v2I0 ““ }

e Prior = fu(u) o exp{—A®(w)} (Gibbsian form)

O © O
© ®_ 0
O 0.0

— Markov models —local characteristics— fu (w;|uj,J # 2) = fu(uw;|uj,j € \AG-/)
the neighbors of {i}
P PP PR
— Wavelet expansions — coefficients x; = (w;,u) are i.i.d. ~ fx,(t) = e(_/\“a(t)) =
e Posterior (Bayesian rule)  fu (u|v) = fuyo(v|u) fu(z) £
MAP 4 = argmax, fuy (ulv) = arg mUiJn ( —In fyjp(vju) —In fU(u))

= argmin( U(u,v) + ,8<I>(u)>

u



Variational approach

Euler-Lagrange: A*(‘%ﬁ_”) = div (%Vﬁ) [Weickert 98, Aubert &Kornpr. 06]
U — v
A = I, if Ut ~
B
= anisotropic diffusion with initial condition ug = v, time step (3 [Scherzer & Weickert 00]

Crucial step: A*Au — % (%utt + cp"(|V'u,|)fu,nn) = A*v

e homogeneous regions: A*Au — 2¢"(0)Au ~ A*v (smoothing in all directions)

o near edges: |Vu| can be preserved large if lim ¢"(t) = 0 so that " (|Vu|)unn ~ 0

t— 00

Qualitative result

The contribution of A along us: and u,, difficult to characterize

Both approaches lead to similar energies
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1.4 Minimizer approach
(the core of this tutorial)

Notice that @ is an implicit function of v and of the shape of F,

Analyze the main features exhibited by the (local) minimizers @ of F,
as a function of the shape of F,

e Point of view able to yield strong results on the solutions

(not yet explored in a systematic way)

e Focus on the singularities of F,, (non-smoothness, non-convexity)



Illustration: the role of the smoothness of F,

STAIR-CASING

EXACT DATA-FIT

Data (—. — .—), Minimizer (—)

p p—1
Fo(u) = Z(ui — ;)% + 52 lw; — Uit
i—1 i=1

smooth non-smooth

Folw) = Zmz—m +6Z i —uit1)?
non-smooth smooth
P
Folw) =Y (ui—v) WZ s = uit1)?
i=1
smooth smooth
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2 Regularity results '

2.1 Preliminaries [Hiriart-Urruty & Lemaréchal 96, Rockafellar 97, Ciarlet 00]

o F,:RP — Riscoerciveif lim F,(u) =00 = 34 such that F,(a) = ing.’Fv (u)
uec

[w]|—o0

e QO CRPisconvexif u,weQandh e (0,1) = Ou+(1—0)weN

an affine manifold {u € R? : Au = b} is convex

e F,:RP — R is convex if F, (Hu + (1 — Q)w) < O0F,(u)+ (1 —-0)F,(w), Yu,wand @ € (0,1)
Fo is strictly convex if the equality holds only for u = w
D?*F, =0 (positive definite) = F, strictly convex

o F,: Q) — R convex, coercive, continuous, {) convex = the set of its minimizers

{Ql € Q: Fy(u) =infyeq fv(u)} is closed and convex

e F,:RP — R coercive, strictly convex = 3, unique : F,(u) = inf,ecrr Fy(u)
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e Right-derivative of F,, at w along w: 6F,(u)(w) = lim

Fo(u 4+ tw) — Fy(u)
tl0 t

The relevant left-derivative is  —dF, (u)(—w)

F., differentiable at w along w = —d0F, (u)(—w) =6F, (u)(w) = %.7:@ (u"l'tw)‘t:o

e Theorem 2.1

Fo» has a (local) minimum at &@ = 0F,(4)(w) > 0, YVw € RP
& —0Fy(u)(—w) <0< dF,(a)(w), Ywe R?P

left derivative < 0 < right derivative

F., differentiable at & = (VF,(d),w) =0, Vw € R? < VF,(4) =0

o F,: RP — R convex

Subdifferential of F, at u 9F,(u) = {g € R?P : (g,w) < dF,(u)(w), Vw € Rp}

0F, is nonempty, compact and convex

F, differentiable at u = 0F,(u) = {VF,(u)}

g € O0F,(u) is a subgradient of F, at u

Theorem 2.2

F» has a minimum at 4 < 0 € 0F,(4) & 6Fy(a)(w) > 0,Vw
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We focus on

NS

®(u)

/fv(U) = [[Au —v||* + B2 (u) )

= S e(IGiul)

=1

/

{G;} linear operators R — R?, s > 1 (typically s =1 or s = 2),

systematic assumption:

kerA N kerG = {0}

G =I[G%,...,G:]*

U : R? — RP (strict) minimizer function: Yv, F, has a (strict) minimum at U (v)

rankA = ¢, ¢ ~ C™=2 convex, ©'(0)=0 = U~C™ !

(implicit functions theorem for V.F, (U(v)) = 0)

@' (0) >0 = F, is nonsmooth on | J. {u : Giu = 0}

JF» nonconvex = there may be many local minima
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2.2 Stability of the solution (® possibly nonconvex) [Durand & Nikolova 06]

Assumptions
e ¢:R, — R is continuous and C"™=% on R \ {61,60-....}
e rank(A) =p
A. LOCAL MINIMIZERS
(knowing local minimizers is important)
if 4 is a strict local minimizer of F, then there is a C" !'strict (local)
I'ee = {veR?:

minimizer function U : O — R? such that v € O C R? and & = U (v)

= all data leading to (local) minimizers having good regularity properties

C

loc is its closure

= R\ I'ioc contains all nonstrict minimizers, I'¢ _

Theorem 2.2

The Lebesgue measure of I'C. in R? is L9 (I‘C ) =0

loc loc

e no special assumptions if & smooth (result follows from Sard’'s theorem)
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B. IMPORTANT INTERMEDIATE RESULTS

e ® smooth

c {v ERY:3a € RP : VF,(d) =0 and det V2F, (d) = 0}

= FO C Floc

We prove that L1 (I‘g) =0

For almost every v € R? every local minimizer @ of F, is strict
=

and V2F, (@) is positive definite

o dconvex = To=Tpe=RP (V*F,(u) > 0 Vu)

e ® piecewise smooth (p’(0) > 0)

A

h = {i:Gia =0}
K, = {weRP:Giw=0,Vi€h}

Notations: U MINIMIZER — {

( ¢(||G;a]|]) is nonsmooth V2 € h but F, is smooth on K; near u € Kj )

15



We prove that 3 I'g C I'loc, such that | L9 (I‘_g) — 0 |[and:

/

V.’FU‘KFL (4) =0, V2F, K, (@) > 0 (sufficient condition for
strict minimum on K3 )

O0Fy(a)(w) >0, YVw € K;L‘ \ {0} (sufficient condition for

Vv eTo «

L strict minimum on K3-)
h

where 1 1s a minimizer of F,

® For almost every v € R9, F, has a finite number of local minimizers

C. GLOBAL MINIMIZERS | I' = {w € R? : F, has a unique global minimizer}

Theorem 2.3

L2(T'°) = 0 and the interior of I' is dense in R?Y.  The global minimizer function

U:T — RP isC™ ! onan open subset of I' which is dense in RY.

= [ the optimal solution 4 is almost surely unique )
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2.3 Nonasymptotic bounds on minimizers [Nikolova 07]

o {G;u};_;: discrete gradients or 1st-order differences between neighbors = kerG = span(1)

If u 1-D signal, e.g. Giu = wit1 — u; 1=11,...,1]
. Wi,j — Wit1,j G2k—1U = Ui,j — Uit1,
u ~ (m X n) image Gru = or
Uij — Wi, 541 Ga2ru = Uij — Ui j+1

k= (j —1)m+ < if image(:)

Classical bounds hold for 8\, 0 or 3 /" oo

Assumptions

e pisC'onRy, ¢'(t) >0 on Ry

e or ¢(t) = min{at?, 1}

o(t) = min{at?,1} = F, is smooth at every local minimizer @4 and VF, (@) = 0

nonsmooth at —— [Nikolova 04]

N
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A. BOUNDS ON RESTORED DATA A

Theorem 2.4

e assume rankA =p or '(t) >0, Vit >0

If F, has a (local) minimum at @, then ||Aa|| < ||v]| (“maximum principle”)

e assume rankA = p > 2, kerG = span(1) and ¢'(t) > 0, Vt > 0

= dN C R? with LY(N) = 0, such that Vv € RT\ N, |[[Ad| < ||v]

e A orthonormal (e.g. A=1) = ||a|| < ||v||
¢ & smooth = N = {v cR?7: A"v x A*A]l} Uker(A*), dim N <gq

B. THE MEAN OF RESTORED DATA

e Usually mean(noise)=0
e If A =1, then mean(#) = mean(v)
e mean(A4) = mean(v) if 1 € ker(G) and A1 < 1

o In general mean(A) # mean(v) (try p(t) =t° and any A invertible)

18
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C. RESIDUALS FOR EDGE-PRESERVING REGULARIZATION

Additional assumption: | [|looc = sup ’go'(t)’ < 0o (¢ edge-preserving)
0<t< oo

Theorem 2.5

Let rank(A) = q. For every v € R?, if F,, has a (local) minimum at 4 then

lv — Ad|l, < § ¢l [|(AA*)~A]| Gl

Reminder: |[|C|[1 = max C; ;| and ||C — max C; .
IClx = max } | |Ci;s| and [|Clleo = max | |Ci
2 J

o Signal (|Gli=2)and A=1 = |lv—1d|_ < B¢ |l

e Image (|Gl =4)and A=1T = |lv—d|, <28]¢ o
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Sketch of the proof for & smooth

VFp() =0 = 24%(v—Ad) = pV(a) %(AA*) 1A
v— Al = g(AA*)_lAVCI)(a)
o~ Adloe < Cfaan) 7 A IV
)| = \Z(Gi[-,n])**”’flﬂf;ﬁ”)azxsnso’uooZZ\Giu,nH
V(@)oo = max!—@( )| <l ||oomaxZZ]G jonl| = 19’ o IGlIn

each G; is a s X p matrix

e Remark: ||Au —v||° ~ white Gaussian noise (unbounded)

However the noise estimates (v — Au); are tightly bounded

20



D. BOUNDS ON THE RECONSTRUCTED DIFFERENCES G111

Proposition 2.6
A orthonormal = ||Gall < |G|z ||v]|

Remind: ||C|l2 = max{v/\ : A\ = eigenvalue of C*C} = sup HCuH

[ull=1

Smooth regularization (©'(0) =0)

We compare Gu with GZ where
2 = arg min ||[Au — v||? = (A*A) ' A*v  (the least-squares solution)

Theorem 2.7

Let rank(A) = p. For every v € R, if F, has a (local) minimum at 4, then there is an

r X r linear operator H, such that

Gu=H, G 2,
Spectral Radius(H,) < 1

More precisely: H, = (I + %G’(A*A)_lG"‘diag(O))_1 , 6; >0,V%

Similar result for nonsmooth regularization (¢'(0) > 0)
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3 Minimizers under Non-Smooth Regularization'

3.1 General case [Nikolova 97,01,04]
¥ eCm?? peC™(Ry)and ¢'(0) >0 Fo(u) = ¥(u,v) -I-QZSO(HGWH)
1=1

Examples: ¢(t) =t*, 0 < a <1, ¢(t) [Besag89, Geman92,Rudin92, Black96.. ]

_ at
— (14at)

1, " 1, T 1 T 1

-0.2 (0] 0.2 -0.2 (0] 0.2 -0.2 (0] 0.2 -0.2 (0] 0.2 -0.2 ] 0.2

v=-0.6,1=-0.1 v=—0.49. 7 = 0 v=0.3,7% = 0 v=0.49. 7% = 0 v=0.7,7% = 0.2
Fo(u) = (u—v)2+|u| (15t row). Check 0 € DF, (@) (2™ row): =0 if |v| < % ﬁ:v—%sign(v) else
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Theorem 3.1 (Generalizes the above observation)

¥(u,v) = ||Au — v||?, rankA = p.
For almost every v € R? (Vv € T'g) if F, has a (local) minimum at

= JOCRYopen, v €O andIU € C™ ' (local minimizer function)

G;a' =0 if ’iEiL

v’ € O = F,» has a minimum at @' = U(v') and .
Gii' A0 if 1€ h°

where h = {i : G4 = 0}

Theorem 3.2 (General V)

F» has a (local) minimum at 4
o §F,(a)(w) >0, Vw e K;-\ {0}
o uﬁ

=> same conclusion

local minimizer function for Fy|k, , continuous at v (Theorem 3.1)
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def

h C{1,..,r} O; = {veR?!:GiU(W) =0, Vi€ h}

Theorems 3.1-3.2 = L9(0O;) >0 = noisy data do come across O,

[ Data v yield (local) minimizers @ of F, such that G;u = O for a set of indexes iLJ

A

Gi ~V,, = h =constant regions = stair-casing: u; = 4; for many neighbors (2, j)

THE SHAPE OF Oj FOR 1D SIGNALS

p—1
Fo(u) = |[Au —v||? + 6Z|ui+1 — u;|, A€ RPXP invertible

1=1
e Vit € RP 3IWy polyhedron dim(Wy) = #h

veW; = 4 =arg min F,(u)
ueRP

® \V/i:L C {1, cee9e D — 1} O; = U(Qp_#ib_l po]yhedra Oqu) 5 R9? = closure (UFL Oﬂ)

24



1 160 1 160 1 160 1 100

o(t) =t2/2if |t| < a, (t) = alt| — a?/2 else ©(t) = (t + asign(t))?

Ak

NN p— U

1 100 1 100 1 100 1 100

p(t) = [t] p(t) = alt|/(1 + alt])
25




3.2 Illustration: soft thresholding

[Donoho94] Folu) = Z(u" — vi)z + 3 Z | |

=1 1=1

mln]: Zmln{ i — U;) —|—5|uz|}

0 if v <2 . |
U;(v) = 2 = h = z:Z/liv:O:z:vZ-<ﬁ
) {fui—gsign(vi) if |vi|>§ { ) } { il = 2}
o 0F,(u)(e;) =2(u; —v;) + Bsign(u;) {e;} is the canonical basis of R?
_ Q. B B e
e O, =vER |v7,|< ,Vi € h and |’vz|> ,Vi € h

. L£9(O) > 0, Vh

- { O :h C{1,..,q} } is a partition of R4

e 1 is sparse
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3.3 An application: recovery of Quasi-Binary images [Nikolova 98]

e The sought image is binary (e.g. document) wu € {0,1}?, Datav=u+4+n

e C(lassical approach: Binary Markov models =- calculation troubles

(direct calculation is infeasible, SA approximation is costly, ICM vyields poor solutions)

Surrogate methods (convex criteria, median filtering) unsatisfactory

e Instead, define continuous-valued quasi-binary minimizers

_ _ discourage nonbinary values
of convex energies which

enforce stair-casing

minimize F, subject to v € [0,1]P  (convex constraint)
2 <
Fo(u) = > (ug—v)%—~) . (uz — %) +BZiNj ‘uz —ujl, 7=1
where 2 ~ 7 means that 2 and 7 are neighbors
e Extendsto v = Au + n if rank(A) =p
Applications for blind channel estimation [Alberge et al 02, 06]
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Vall

L 'I 'wd 1

==
s

Val

Original image u

vl

Original image u

Proposed method

vl

Data =wu-+salt &pepper Proposed method
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3.4 Total Variation (TV) regularization

Image u : 2 C R® — R is of bounded variation (BV) if TV (u) < oo

(Total variation) TV(u) = / |Du| = sup { / u divé : € €CH(), ¢ < 1}
Q Q

Coarea formula = fR Perimeter(Eu (t))dt E,(t) = {:13 € Q:u(x) > t}
the t-level set of u

If u differentiable TV (u) = [_ || Vul|
BV = the space of functions of bounded variation

BV is often a reasonable functional model—recovers edges (discontinuities) and TV is convex

e Natural images do not belong to BV [Gousseau &Morel 2001]

Since [Rudin,Osher &Fatemi 92] TV is a very popular regularization : ®(u) = TV (u)

Fo(u) = [lu —v|I3+ 8 TV(u)

SEVERAL FACTS ABOUT TV REGULARIZATION
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Full description of @ when v = Iy, X C € convex [Alter, Caselles &Novaga05]

1 ifzeX
Is(z) = 5 (the characteristic function of )

0 else
New stability result [Caselles, Chambolle &Novaga07]
{edges of ﬁ} C {edges of fv}

Discrete equivalents for an image ©v € R™*"

TVi(u) = Z(

1,J 1,7
TVa(u) = Z \/(u” —Uit1,5)2 + (Ui — Ui j41)2 = Z Vi jull2
i,J (2%

Uj j — ui+1,j‘ +

u’i,j_ui,jJrlD = ZHV@Mh

For a signal u € RP, TV(u) = ZZ }uz — ui+1’

— TV is a classical Markovian enery (median-pixel prior) [Besag 89]

— TVa2 is rotation invariant, TV is easier for computation
Theorems 3.1-3.2 apply with h = the constant zones in & = sparsity

Quantitative characterization of sparsity [Malgouyres 06, 07]

In connection with the data distribution
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e Since [Meyer 01] texture restoration [Vese &Osher 03, Aujol &Chambolle 05,...]

minimize ||w|l¢ + BTV(u) subjectto v =u+ w = cartoon + texture

|lwl||a ' inf {||g||oo rw = div(g)} oscillating patterns (like texture)

e How to avoid stair-casing (when undesirable)

— regularize TV, e.g. \/a + (TV(u))?, « 20
— Minimize ¥(u,v) subject to TV(u) <7 [Combettes &Pesquet04]
— lterative regularization using Bregman distance (dg) [Osher at al.05]
u(1) = arg min,, {Hu —||? + ﬁTV(u)}
fork=2,...,K: u®) =argmin, {Hu —||? + Bdp(u, u(k_l))}
dg(u,v) =TV(u) —TV(v) — (g,u —v), g€ ITV(v)

e Equivalence results for signals u € RP [Steidl, Weickert, Mrazek & Welk 04]
Space discrete T'V diffusion = T'V regularization, 3 = time step
Soft Haar wavelet shrinkage and T'V diffusion on two-pixel signals are equivalent

These equivalences are false in general
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4 Minimizers relevant to non-smooth data—ﬁdelity'

4.1 Main result [Nikolova 01,02]

q
YEC™ and '(0) >0, B €C™  Fp(w) =Y v(|(ai,u) — vs]) + B2(w)

1=1

Example: (t) =t  [Alliney 94,97]

Theorem 4.1
If F, has a strict (local) minimum at i, denote h = {i : {(ai,4) = v;}
Ki(v) = {u € RP: (ai,u) =v; Vi € ﬁ}
K; = {'u, € RP: (a;,u) = 0 Vi € iL} (the tangent of K; (v))

o VFulx, (v)(@) = 0 and V2F, | (»)(@) >0
o 5F,()(w) >0, Vw E K}f \ {0}
= 3O CR?open,v € O and IU ~C™ ' such that
<a,7;,’ll,> =v; if 1€ h

v’ € O = F,, has a minimum at 4’ = U(v") and
<a7;,ﬁ,> *wv; if 1€ h°
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e Weak assumptions—details in [Nikolova 02]

e Forh C {1,..,q} and U, define O; = {v € R?: (a;,U(v)) = v;, Vi € fz}

Theorem 4.1 = L9(O;) > 0 = noisy data do come across O,

Noisy data v yield (local) minimizers @ of F, which achieve an

exact fit to data (a;, @) = v; for a certain number of indexes 2

\ «VI
\
< v\"ﬁ'
0% \vv‘
RS A“‘"‘\‘ “\" ' ‘

»0*

" 4\
‘ '(‘ A
(4 N \ 27
A=
4)“{“‘»“(’3;’ . l

t«!!
:‘»/A

v (:':\‘ ‘I \\
i t?'«fvii""' |
\‘v./'}\‘j! Wlm \\\\ ‘A
XX P ;
.4}‘

w})‘,}~ g
‘O‘II ‘
”A

“O‘\ V “\

Original u, Data v = u,-+outliers
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4.2 Detection and cleaning of outliers using ¢; data-fidelity

1=1 3€J\f

7. <u>—2|uz—v2|+ﬁz S e(ui — usl)

©: smooth, convex, edge-preserving

data v contain uncorrupted samples v;

v; is outlier if |v; — v;| > 0, Vj € N;

Assumptions:

veERP = 4 =argminF,(u) v; isregular if i € h

h={i:0; = v; } v; is outlier if i € h®

[Nikolova 04]

O © O
i

© @ ’

O © O

Outlier detector: v — h°(v)

{1 : 4; # v;}

Smoothing: i; fori € h® = estimate of the original uo;
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Justification based on the properties of i

Regular data samples are fitted exactly (u;, = v; for i € iL)

v; is an outlier if it is too dissimilar with respect to its (recovered) neighbors

w patch of outliers—1i,, depends only on the regular samples surrounding w

The same set of outliers h if
— small perturbation on the regular samples
— arbitrarily large perturbation on outliers

= stability of the outlier detection

The solution 4 remains unchanged under arbitrarily large perturbation on outliers

Remark: 8 < (||V<I>('v)||c,o)_1 = U=

More formal results in [Nikolova 04]
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Recursive CWM (||t—uo||2 = 3566) PWM (|l —uo||2 =3984) Proposed (||t —uol|2 = 2934)
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Recursive CWM (||t—uo||2 =T7497) PWM (|l —uo||2 =6265) Proposed (||t —wuol|2 = 6126)
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4.3 Restoration of frame coefficients using £; data-fidelity [Durand & NikolovaQ7]

e Noisy data v = u, + noise

e Noisy frame coefficients y = Wv = Wu,+ noise
0 if |y <T
yi if |yi| >T

u = W™ yr — Gibbs oscillations and wavelet-shaped artifacts W™ left inverse

e Hard thresholding keeps the relevant information yr, =

e Hybrid methods—combine yr with prior ®(u)

Different energies [Bobichon & Bijaoui 97, Coifman &Sowa 00, Durand &Froment 03...]
Our choice: minimize Fy(x) = Z)\,; (x —yr)i| + /Q (VW™ x|) (¢ = TV)
u=W*%E z
Rationale
Keep ; = yr; Restore &; # yr;
significant coefs y; = (Wwuo); outliers |y;| > |(Wwuo); | (frame-shaped artifacts)
thresholded coefs if (Wu,); =0 edge coefs |(Wwuo);|>|yr;|=0  (Gibbs oscillations)
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100 1 100

0 0
1 250 500 1 250 500
Original and data Sure-shrink method Hard thresholding
| | | | o original .
X threshold .
1oor 1oor * restored
50r
o (0]3
23k X TR URPRRROUO
2 9
58 *** M e
1 250 500 1 250 500 M T 425
Total variation The proposed method Magnitude of coefficients

Restored signal (—), original signal (- -).
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Optimal threshold 7' = 100 (x) Our data T' = 50 Proposed method
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4.4 Fast Cleaning of Noisy Data From Impulse Noise

200

-1 0 1

Original image u* Data v = u, + w (impulse noise)  Histogram of n + w (all the noise)

ke
%

Data u, &Histogram n

5001

to recover based on v

<

-1 0 1

Original data uo = u™ + n Histogram of n

minimize F,(u) = ||lu — v||1 + B||Gu||?

Fast minimization—the scheme in §9.2-A is explicit
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Proposed method

500

noise estimate nNn=u—u,

500

noise estimate nNn=u—u,

500

noise estimate N=u—u,
44
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|4 —uoll1 =14, [|.]2=26



4.5 Practical 2-stage methods to clean impulse noise

Approximate the outlier-detection stage by rank-order filter

= increase speed and accuracy

Methods for denoising (4 deblurring under mixed noise)

e Corrupted pixels h¢ = {i : 0; # v;} where 6=Rank-Order Filter (v)
— salt &pepper (SP) noise by adaptive median

— Random-valued noise by center-weighted median

e Restore {f&z 11 € BC} by an edge-preserving variational method
subject to 1; = v; for all ¢ € h

— Fast optimization, pertinent initialization

45
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NASM (21.8 dB)  ISM filter (23.4 dB)  Adapt.med.(25.8dB)

Variational (24.6) Our method(29.3dB) Original Lena
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30% random noise ACWMF with s =0.6 DPVM with 8 =0.19

50% random noise ACWMF with s =0.3 DPVM with 8 =0.19 Our method

47



5. Nonsmooth data-fidelity and regularization '

A consequence of §3 and §4: if ® and ¥ are non-smooth (as specified)

G =0 for i€ hy, #0
(a;, @) =v; for i€ hy #0

5.1 L1 data-fidelity and TV regularization

Fo(u) = [lu —v|1+ BTV (u)

A. RESTORATION OF CHARACTERISTIC FUNCTIONS [Chan &Esedoglu 06]

o The regularization imposed on the solution is more geometric than with ||u — v||?
e Data v = 1 for Q C R? bounded

e For almost every 3 > 0, 43 C €2 such that s is the unique minimizer of F,

B — ||lv — 4g||1 is discontinuous (critical values for ()
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B. RESTORATION OF BINARY IMAGES [Chan, Esedoglu &Nikolova 06]

Classical approach to find a binary image @ = 1 from binary data 1o, Q C R?

¥ = arg min{ H]lz — o5 + ﬁTV(]lg)} nonconvex problem

= arg mln{Surface(E A Q)+ BPer(X)}  usual techniques (curve evolution, level-sets) fail
(symmetric difference)

Instead—the convex problem

4 = arg min,, {||u — la||l1 + ,BTV(U,)}

is solved for w4 = 1s

= Algorithm for finding the global minimum

C. DISCRETE FORMULATIONS

o Fi(u)=>)_, . (|’Un‘,j — Vij| + 5||Vz',ju||p>7 p=1lorp=2 (see §3.4)

e minimize F, (u) yields a morphological filter [Darbon-Sigelle06]
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6 Comparison with Smooth Energies
L# [Nikolova 04]

Theorem

Fo(u) = ¥(u,v) + BP(u), F < cm22 o4 assumptions. Ifh # 0@ =

{v € R? : F,—minimum at @, G;u4 = 0, Vi € h} closed and
{v € R? : Fy—minimum at @, {a;, ) = v;, Vi € h} negligible in R

e The chance that noisy data come across Oy, for any h # 0, is null

The chance that noisy data v yield a minimizer @ of F, which satisfies exactly

Gi:i = 0, or {(a;,4) = v;, for some ¢, is null

e Almost all v € R? lead to & = U(v) satisfying G;a 7% 0, Vi and {(a;,4) # v;, Vi

Salient features of the minimizers of smooth energies are tricky to obtain
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7 Non-convex regularization'

7.1 Edge enhancement

Assumptions on ¢: C? on R and lim¢_, o0 "' (t) = 0

Fo(u) =|Au — v||> + 8> @(||Giul|)

@’ (0) = 0 (® is smooth)

7

> 0 on [0, 7]

0<7T<T: ¢'"{ <O0decrease (7,7]

\

< O increase [T, c0)

s

2
o(t) = 122

20

o

¢’ (t)

1=1

[Nikolova 04]

@’ (0) > 0 (P is nonsmooth)

©'’(07) <0

@’ < 0 increase on (0, c0)

p(t) =

51
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A. ILLUSTRATION ON R

Fo(u) = (u—v)* + Be(Jul), u,v €R

1) ~
€0

iy ;
€o

0o 01

©'(0) =0 ©'(0) > 0

no local minimizer lies in (0o, 01) = {t >0:¢"(t) < —2/6} (F) (u) < 0)

e [v|<& =
e |v| > &o =

& >0, & > &o

3 local minimizer |Go| < 69 (strong smoothing)

3 local minimizer |G1| > 61 (loose smoothing)
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lv| < € = global minimizer = @9 (strong smoothing)

o J 5 S (50951)

lv| > € = global minimizer = 4y (loose smoothing)
ffu (U/) f’U (u)
XS
e
P0 01 u
Fo(w) = (u—0)? + Bz Fo(u) = (u—)? + frpolul s

(1+au?) (I+aful)

Each curve u — F, (u) for a different v

For v = £ the global minimizer jumps from o to U1

= decision on the presence of an “edge”

Since [Geman?1984] various nonconvex ® to produce minimizers with smooth regions and sharp edges
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B. EITHER SHRINKAGE OR ENHANCEMENT OF DIFFERENCES

Theorem 7.1 [® smooth]
¢ nonconvex and ¢'(0) = 0, GG* invertible, 8 > K(A,G, p)
= 3 6o € (7,7) and 601 > T : if F, has a (local) minimum at 4 then

either ||G;il|| < 00 or ||Gial| > 01, Vi

ho=1{1i :||Gial < 6o} hi=1{i: |G| > 6.}
homogeneous regions edges
Truncated Quadratic PF ¢ (t) = min{at?, 1} (the discrete Mumford-Shah)
Proposition 7.2 [Nikolova 00]

Fov has a global minimum at 4 = V1
< L
— ﬁ

I'; < 1 (explicit form)

1
\/aI‘i

>

either ’fl,z'_|_1 — U; or ’fl,i_|_1 — U;
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L : —

1 64 127 1 64 127

Uo; — Uo;+1 VS ¢ for 100 original signals  4; — 1,41 vs % for the global minimizers

X-axis: positions of differences 1 = 1,...,127. Y-axis: a dot at position 7 is the value of the ith
difference of a signal. Thresholds £T'; /y/«, +1/+/al’; for i =1,...,127 (—).

Noisy data v = uo *a + n, ay, = exp_0'14-4 , |k] <5 and n white Gaussian noise, 10 dB SNR
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Theorem 7.3 [P nonsmooth] [Nikolova 04]

¢’ (0)> 0 nonconvex, 3> K(A,G,p) = 3 601>0 : if F, has a (local) minimum at @ then

either ||G;a|| =0 or |G:all > 601, Vi

Strong result with no special assumptions

ho={i :|Gia| =0} hi={i : ||Gia] > 61}

strongly homogeneous regions neat edges

= Enhanced stair-casing, high sparsity

‘“0O— 1" PF (0) =0 and (t) =1 ift #0 (Potts)

Proposition 7.4

Fo» has a global minimum at 4 = V1

either ’l:l,i_|_1 = U; oOr |’fl,i_|_1 — U,

/B
|Zp—i

Explicit formula for I';. Strict inequality if unique global minimizer.

e Necessary condition for @ to be global minimizer
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IMAGE RECONSTRUCTION IN EMISSION TOMOGRAPHY

@ is smooth (Huber function) o(t) =t/(a+t) (non-smooth, non-convex)

Reconstructions by minimizing F, (u) = V(u,v) + BZ e(|ui —uj]), ¥ = smooth, convex
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7.2 Selection for the global minimizer

Additional assumptions: ||¢|lecc = 1, Gi:RP — R—first-order differences, A™ A invertible

1 1 ifti€ X (the characteristic hi1 = {i: ||G;1xs]|| # 0} (edges)

i —

’ 0 else function of X ) ho = {7: ||G;1x]|| = 0} (constant zones)
Original: u, = &éllss, € >0 Data: v = £ A Iy = Au,

u = global minimizer of F,

£ <& U is smooth
Theorem 7.5 [® as in Thm 7.1.] 30< ¢ <& =

£ > &1 1 has correct edges

Proposition 7.6 [¢(t) = min{at?, 1}]

2 =(A*A+ BaG*G)~ ! A* Ally, (the regularized least-squares for £ = 1)

5 S (07 50)

= £ 2 (no edges)
£> & = a =& 1y (the original)

3 0<£0<£1:




Theorem 7.7 [® non-smooth]

The context of Theorem 7.3. Then 3 &9 > 0, I &1 > &o

e £€(0,&%) = u=c£l c = (All, Ally)||AL|| 2 (constant solution)
G;ull =0 Vi € h

e (E>&1 = | | 0 (perfect segmentation)
IGiall > 61 Vi€ hy

If 33 connected, then 4 — Ells; as & — oo

Proposition 7.8 [“0-1” PF  ¢(0) = 0 and ¢(t) = 1 if t # 0]

e (0 = W =cé&1N (constant solution
3€0>O, 3£1>h0 € (’50) € ( )
£ > &1 = 4 =& Uy (the original)
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7.3 Comparison with Convex Edge-Preserving Regularization

i

1 100 1 100 1 100

Data v = uo +n p(t) = || p(t) = alt]/(1 + at])
e If F, is convex, then ||G;ul|| can take any value on R

e TV (convex, edge-preserving) creates constant zones, a fortiori these are separated by edges

whose amplitude is underestimated

e Edge-detection using ¢ non-convex is fundamentally different: it relies on the concurrence

between different local minima corresponding to different edge configurations

The discontinuity of v — U(v) at some points plays a key role for the detection of edges

ILLUSTRATION OF ALL PROPERTIES

60



Original image Data v

Datav=axu-+n a—>blur

n—white Gaussian noise SNR=20 dB

o) = at?/(1+at?) o) =altl/(L+alt) @) = min{at?,1}  o(t) = 1 - Loy
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8 Model distortions under Bayesian M AP
L# [Nikolova 07]

8.1. MAP estimators to combine noisy data and prior

Likelihood fyv i (v|u) 4 Prior fur(u) o< exp{—A®(u)}

MAP 4 = the most likely solution given the recorded data V = wv:

U = arg max, fyy(ulv) = argmin, < —1In fyjy(v|u) —In fu (u))
= argminy (q!(u, v) + 6®(u))

Realist models for data-acquisition fy iy and prior fu

= 4 must be coherent with fy|y and fu

U~ fu fo = Ju
= we need .
AU — V ~ fn fx~fn, N=AU -V

In general f; and fs cannot be calculated

62



EXAMPLE: MAP SHRINKAGE ESTIMATORS

[Simoncelli99, Belge-Kilmer00, Moulin-Liu00, Antoniadis02]

Noisy wavelet coefficients
y=Wov=Wu,+mn

where n ~ N(0,0?)

Original coefficients z, = Wu,

Prior: x; are i.i.d., Generalized Gaussian (GG)
xi ~ fx(t) = —=e

fx@) = []/fx@)

Experiments have shown that usually o € (0, 1) for real-world images

MAP restoration & = argmax, f(y|z)f(z) = argmin, ) _ ((xl — i)+ )\Z-|:1:Z-|O‘>
& T; = arg minier ((t —yi)? + )\i|t|a), Vi

Restored image or signal « = W*&
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e sample z € R from fx

(a, A) and o fixed—
{ o y=zx+n, n~N(0,0?)

10000 independent trials:

e compute the true MAP &

0 < a < 1—modes 41 = 0 and |t2| > 0.47

fxy (., y)—one mode if a > 1 = P ¢ (0)=Dirac and P4, =0 on (—0,0) U (0,0)
| ‘ | 0—
o ° ) Prior fx for True MAP &
GG prior The true MAP Z
a=05 A=2 + zoom

a=12,2=0.5

OT““'O“‘“‘—;
Noise NV(0, 0?) Noise estimate _ _ _
Noise N(0,c?) Noise estimate
oc=20.6 n=y—=o
for c = 0.8 n=y—=o
Hist(Z;) # fx and Hist(y; — &;) # fn = Gap between model and estimate
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8.2. Non-smooth at zero priors

A. EXPERIMENT: LAPLACIAN MARKOV CHAIN CORRUPTED WITH (GAUSSIAN NOISE

e Markov chain : fy o exp ( — )\(ID(u)) with ®(u) = A ];:_11 lu; — uit1], A>0

U; — U1 —i.i.d. Laplacian—far (t) = 3 exp ( — Alt])
e Data V=U+ N, N~ N(0,02%I)

e MAP energy F,(u) = ||lu—v]||? + ,827: ‘uz —uiy1|, B =20%X

100 400 100 400

Original u (—), u; — u;4+1 sampled from fapy The true MAP 4 (—) versus the original u (- - -).

for A\ =8 and datav=wu+n (---) for o = 0.5. @ involves 92% null differences

The same experiment 40 times: no zero-valued difference uo; — uo; 1 Was sampled whereas 87% of all
restored differences u; — ;41 are null = the MAP solution does not fit the prior
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B. EXPLANATION

Statistical consequence of Theorem 3.1:
v € O and 4 = arg max.cre fuy (ulv) = {G,;ﬁ =0Viech & ac Kﬁ]
= Pr(UeK;)>Pr(VeO;) = foﬁ fv(v)dv > 0
since fy (v) = + [ exp ( — ]:U(u))du > 0and L9(O0;) > 0

The “prior” model on the unknown U effectively realized by the MAP estimator U corresponds to

images and signals such that G;U = 0 for a certain number of indexes i.

If {G;}=first-order, then effective prior model for locally constant images and signals.

According to the prior distribution, for any nonempty h C {1,...,r}
Pr(U € Ky) = th fu(u)du = 0

since frr Is continuous and dim Kp < p
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8.3 Non-smooth at zero noise models

A. EXPERIMENT: GENERALIZED (GAUSSIAN MARKOV CHAIN UNDER LAPLACE NOISE

e U — Markov chain, U; — U;—1 ~ fau are iid., fau(t) = e
e Data V =U + N where N; are i.i.d. with fn(t) =
e MAP energy: F,(u) = 7,—1‘ U;

— Al

a 50

100 a 50 100

Uo (—) fora =1.2,A=1,datav (--) True MAP 4 (—) vs uo (---)

a 50

100 a 50 100

Laplacian noise n for o = 2.5 The noise estimate N = y — .

Uo; 7 v; for all i whereas the MAP 4 contains 93% samples satisfying @; = v; (fn(0) =Dirac)

The same experiment 1000 times =-

the true MAP cannot efficiently clean Laplacian noise
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B. EXPLANATION

V =AU+ N, NszN are i.i.d. fN(t) = %€$p(—0'¢(t)) continuous, ¢/(0+) >0
fVIU(’U|u) — HfN((CLz',’@ — ’Uz') X exp ( — J‘Il(u, v))

Y(u,v) = >, v({ai,u) — vi)

=1
= Pr((a:,U) - Vi=0) =Pr (Ni =0) =0, Vi
For X ~ Gibbsian where ® ~ C™, the true MAP 4 minimizes

= — 2
By Theorem 4.1 Fo(u) = ¥(u,v) + BP(u), B=3

veE O and 4 = argmaxucrr fuv(ulv) = (ai, @) =v; Vi€ h
— arg min, F, (u)
~ Pr ((ai,ﬁ) _V, =0,Vi ¢ iz) > Pr(V € 0;) = [, fv(v)dv >0
h
since fvy(v) > 0and L9(O0;) > 0
For all i € h, the prior has no influence on the solution and the noise remains intact
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C. YET ANOTHER EXPERIMENT : LAPLACE NOISE MODEL TO REMOVE IMPULSE NOISE

o A=1
e Data samples v;, ¢ € h are fitted exactly, hence they must be free of noise.
If i € h® then v; is replaced by @; = U;({v; : j € h}) which is independent of v;

e The MAP estimator defined by F, corresponds to an impulse noise model on the data

1 50 100 1 50 100

Original u, (—), data v (- - -) The minimizer 4 of F, for 6 = 0.4 (—),
with 10% random valued impulse noise. the original u, (- - -), and v; # 4; (©)
(More examples in §4) u; = v; for 99% of the noise-free samples.
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8.4 Priors with non-convex energies

V =AU+ N with N~N(0,0?) and U ~ fu (u) x e ***) with ®(u)=> ._,e(|Giul]),
where ¢ and G; as in section 7.1. The MAP 4 yields the (global) minimum of

Fow) =llAu— o] + 8 _e(|Giul), 8 =202
=1

1=

A. PIECEWISE GAUSSIAN MARKOV CHAIN IN (FAUSSIAN NOISE [Nikolova 2000]

Piecewise GM chain = discrete 1D Mumford-Shah = weak-string model |[Blake-Zisserman&87]
U such that U;11 — U, i.iid. ~ fay(t) e~ AP(t)

at? i 1
@(t){ SIS VE a1y, e = pln i)

1 else

For an illustration—see §7.1-B

Repeat 200 times the following experiment:
o generate U = u € R*%° where u; — uj;1—sampled from fay fora =1, A\=5and v =15
e v=u-+n where n ~N(0,0°I), o =4

e compute 4 = argmin F, for the true parameter 3 = 25*\ = 160.
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3000 3000

—15

= Nele I - 10({ ‘ j
o a1s

© —AsS (@] aas —AsS o

Histogram of all original differences Histogram of the differences for all the

u; — uj+1 (up) and zoom (bottom)  true MAP solutions @ (up) and zoom (bottom)

B. EXPLANATION

Theorem 7.1 and Prop. 7.2 imply Pr (00 < ||G:U|| < 01) =0, Vi

The prior model effectively realized by the MAP estimator corresponds to images and signals

whose differences are either smaller than 6g or larger than 6.

In contrast, for the prior distribution Pr (90 < ||G:U|| < 91) > 0, Vi
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C. MAP roRrR ® NON-SMOOTH (¢'(0) > 0)

Theorem 7.3 = Pr (||Gif]|| — o) > 0 Pr (o < |GT|| < 91) —0

If {G;}—first-order differences between neighbors, every minimizer 4. of F, is composed out of
constant patches separated by edges higher than 6, = the effective model realized by the MAP

For the prior distribution Pr (||G’zU|| = O) = 0 and Pr (O < ||G:U|| < 91> >0

Illustration: Original differences U; — Ui 1 i.i.d.~ far(t) oc e 221 on [—v,7], @(t) = 1$lf||t|

1 50 100 1 50 100

Original uo, (—) by fay fora =10, A =1, vy =4 The true MAP 4 (—), 8 = 202\
datav=1wuo+n (---), N ~ N(O, o?l), o = 5. versus the original uo (- --).
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8.5 Comments on Bayesian MAP

e MAP estimators do not match the underlying models for the production of the data and for

the prior
e Knowing the true distributions, with the true parameters, is not sufficient

e The models effectively realized by the MAP solutions can be characterized using different

tools
e (Conjecture: similar problems generally arise with other Bayesian estimators too

e Combining models is an open problem
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9. Computational issues.

9.1 Half-quadratic minimization [Geman &Reynolds 1992],[Geman & Yang 1995]

A. MULTIPLICATIVE FORM (%)

 convex, (,/-) concave [Geman92,Charbonnier97,Idier01...]

Augmented energy F ;
F(u,b) = ||Au — v||?2 + BZ (% 1G;ul||® + ¢(b,;)) (non-convex)

1=1
¢ suchthat  inf  {2IGul® +ub) | = e(IGiul)
Alternate minimization
o = e, v b= b T
Hb®) = 24*A + pG*diag(b®™)G (update each iteration)
u® = (H®®)) "24%v

Amounts to quasi-Newton: u®) = ¢*—1) — (H(u(k_l)))_IV}‘v (u®*—1)
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B. ADDITIVE FORM (+)

© convex, (%t2 — go(t)) convex (in practice—p"" (0) = 1) [Geman95,Cohen96,Aubert97]

- 1
F(ub) = | Au— vl + 8 (5I1Giu—bill® + (b))

=1
1
1) such that i%f {5 |G;u — b||? + ’lp(b)} = o(||Giul|)
For H =2A"A + BG*G (fixed, easy to precondition) calculate
(k) _ (g (k—1) o’ (IGiu*— V) -
oM = Giu (1 £UEETD v
u® = H™'(24%v + BG*b™)
It is quasi-Newton: u(F) = (k=1 _ H-1VF, (ulk—1)) V2F,(u) ~ 24* A + B¢ (0)G*G
Comparison Linear convergence to u*) — 4 for both forms [Nikolova &Ng 05, Allain 06]

Root-convergence factor R(x) < R(+4) (less iterations)
Cost-per-iteration Cx) > C(+)

[Both forms are faster than Steepest descent, Conjugated gradients, BFGS, DFP)
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[[lustration with a small-scale problem

500

Experiment with 1000 random signals

p(t) = Va+t?

1 50 100 100 500 1000 1500 2000 5 10 15

Orig.(- -) Data(—) Iterations % CPU time x

500

100,
50

1 50 100 100 500 1000 1500 2000 5 10 15

Restoration(—) Iterations + CPU time +

For large-scale problems, H~ ! in “4" form may be difficult to store

H(b) in “x"-form may be ill-conditioned, it is inverted at each iteration

C. TRUNCATED FORMS [Labat-Idier 07]

e Truncated preconditioned conjugated gradient to find approximate (rough) inverses
e Convergence proven, CPU time considerably improved

e Similar approach to other quasi-Newton methods
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9.2 Minimization of nonsmooth convex energies

[Nikolova 04]

A. MINIMIZATION SCHEME FOR #1 DATA-FIDELITY

Extension of [Glowinski-Trémoliéres 76] to | Fp(u) = ||lu — v||1 + g Z o(lu; — u;|)

u = Z + v where Z minimizes F,

Fo(2) = Izl + 25, o p, #(zi +vi — 2 — v))

Initialize with z(0) = 0

Iteration k, Vi=1,...,p
(k—1) S=1) )

g,fk) = BZQO/(’UZ'—Z]‘—’UJ'), = (zy{;)a"'azgﬁ)la 07 Zi_|_1 Yty *D )7
JEN;
it cM<1t - M=o
if |§,§k)| >1 — find z,gk) by solving 523’@\@ <p’(z,§k) +yi —zj —y;) = sign(ﬁgk))

knowing that sign(zgk)) = —sign(§§k>)
Under weak conditions 2(k) — 2
(%) involves only the entries whose indexes are in N;.

The calculation of each 2,
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B. FAST MINIMIZATION FOR TV REGULARIZED SIGNALS

(Side-product of the method in A)

Fo(u) = [|[Au —v|2 + 8> P~ " |uy — uiqq|

1=1

zzTu:zi:ui—uiﬂ,1§z’§p—1andzp:% P, B=AT_1=[b1,...,bp}

i=1
Iteration k:
e 1 <17 <p-—1 calculate §§k> = 2b; B (z%k), zék), ey zﬁ)l, 0, z,g_lf_zl), ey zz(,k_l)) — 2bjv
if fi(k) < 0, set zqfk) =0
(k)
it M <—pg st M= —M >0
- (k) (k) §  — B
if g > p set z, = ——- <0
2|[bal]?
(k) ng)
o fori = LR — __SP
g TN

= T 12k . 4

This method cannot be extended to images
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C. FAST MINIMIZATION FOR ¢1 + TV71 AND #¢5 + TV

[Haoying, Ng, Nikolova &Barlow06]

— Au—v = xt —x—

y = PBGu = yt -y
e minimize F(u) = ||Au — v||7 + B||Gu||1, foru > 0

— minimize (LzT) + (L, z”) + (L yT) + (1, yT)
subject to Au—v=x" —x~
BGu =yt —y~

rt >0,z >0, yt >0,y >0, u>0

Linear Program (LP): [minimize (c, z) subjectto Hz = b and z > OJ

e minimize F(u) = ||Au — v||3 + B||Gu||1, foru >0

— minimize |Au — v||2 + (L, y™) + (I, y™T)
subject to BGu =yt —y~
yt >0,y >0, u>0

Quadratic Program (QP): (minimize %Z*QZ + {(c,2), Q>0 : Hz =band z > 0]

Solve LP and QP problems by interior point method + preconditioning
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D. MINIMIZATION OF TV REGULARIZED ENERGY USING DUALITY

(Chambolle’s method 04 to minimize F,(u) = ||u — v||? + BTV (u))
e Imageu € R™*"

e div:R"" x R"*™ — R™™ ™ (matrix operator)

(div £)i,; = (gil’j — 57;1_17]') + (f?,j — 57;273-_1) (+boundary conditions)

o K:{div £:¢6=(¢",¢€%) e R"W"xR™*™, \/( },j)2 +§z-2,j)2 < 1,V(z’,j)} (closed convex)
e Discrete version of TV (§3.3)

®(u) = TV(u) = sup {(u,z) : 2 € K} ~ [|Vul|2

¢ (w) def {(u,w) — sup{u, Z)} — {

(convex conjugate) zeK

(indicator function)

0 ifweéeK
oo ifwé K

e 4 = argmin, F,(u) <= 0€ 0F,(u) < 0€ ad—v+ 20®(a)

~ def 2(v—a ~
— » = 220 € 9P(a)
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Property of subdifferentials: | g € 0P(u) <= u € 09*(g) | (P* is the convex conjugate of ®)

& 4€ P (W) & 0€D— v+ 209* ()

= necessary and sufficient condition for

W = argming ;||lw — 2—"’||2—|-%IK('w)
= arg min ||w 2 &
— g min I@

@w_HK(F”) &S U =v— HK(FU)

Algorithm = compute the (nonlinear) projection I1x (25”)

Constrained minimization—formulation using Karush-Kuhn-Tucker (KKT) conditions

Detailed algorithm and convergence conditions—|/Chambolle 04]

Extension to ||Au — v||? + BTV (u)—see [Bect et al 04]
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E. SOCP rOrR TV REGULARIZATION [Goldfarb &Yin 05]

min TV (u) subjectto u+n =wv, |n|? <o?
Second order-cone {(u,t) 2w < t}

Standard second-order cone propgramming (SOCP) form

min E tz',j
,J

s.t. u+n=wv
Vi jul < ti; (second-order cone)
In|| <o (second-order cone)

Different dual formulations can be derived

SOCP is solved in polynomial time by interior point methods
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F. GRAPH-CUT METHODS FOR DISCRETE TV REGULARIZATION [Darbon &Sigelle 06]

u—discrete-value image, uw; € {0,...,L — 1}, V4
Fo(u) = llu—ollo + B8 jen, Ui —usil, p€{1,2}

o u; =1, <, = u” is a binary image, V/
B 0 else

e reformulate F, into a set of binary images

Fo(u) =, Fu(u®) + const
e Separate minimization for each £
. 0

@' = argmin,ecp Fi(u), B = {1,0}? (the set of binary images)

The first clue: fast computation using graph-cut methods

e Reconstruction 4; = min {£ : af = 1}, V1

e The second clue: proof that 4 solves the problem
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10. Open questions '

e Analyzing the properties of the minimizers in connection with the shape of the energy
provides strong results

e The results provide an alternative way for rigorous modeling

e Conception of specialized energies

e Minimization methods accounting for the features of the solution

e Open field for research...

e Extension to images and signals in functional spaces is necessary to capture the geometry
e What “features’ and what “properties” ?

e Properties of solutions as a function of the randomness of the data ?

e Ultimate goal : conceive solutions that match pertinent models
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