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1. Introduction

Data acquisition in some imaging systems is modeled using linear attenuating operators

(e.g., ultra-sound testing in through-transmission, electron paramagnetic resonance testing, ECT)

Eddy current testing (ECT) for nondestructive evaluation

• Detect and characterize flaws in conductive materials using electromagnetic induction

• ECT as a technique was discovered unintentionally by Hans Christian Oersted in 1820

• ECT for industrial applications – World War II (Germany)

• Multi-frequency testing introduced in 1974 (France)
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Some fields of application:

aeronautics, nuclear industry, steel industry, motor industry, petroleum engineering

Advantages:

easy to apply, no contact with the material, no pollution, safe, very cheap

• Pessimism about ECT in the 1980s – difficult to check that workers really did the job

(An alternative – Magnetic particle Inspection – but more constraints than ECT)

• A lot of progress in research on ECT – industrials came back again (2012) lots of expectation

Main open problems:

I Improve the theoretical modeling in different configurations

I 3D image reconstruction and rigorous validation

I Subsurface reconstruction limit due to the skin effect = attenuation with the depth
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A general forward model

dν = Aν ŭ+ noise

ŭ ∈ {0, 1} – the inspected material

ν ∈ {ν1, . . . , νk} a set of frequencies

Aν – the observation operator for ν (ill-conditioned)

Aν has a particular structure:

Aν = GνHν Hν = diag{e−λν z}

Hν – skin effect – (vertical attenuation)

Each layer z is multiplied by e−λν z =⇒
a stiff degradation of the representation of different layers into the data

Skin effect + noise – the major difficulty in ECT image reconstruction

Challenge: to increase the depth of inspection

Dealing with attenuation under noise is the core of our talk
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2. Our variational approach

The sought image û ∈ RM×N should estimate the location and the geometry of defects

û = argmin
u∈S

{
J(u) = Ψ(u; d) + βΦ(u)

}
• û should be piecewise constant ⇒ Φ ∼ TV-like to promote stair-casing

Ψ(u) = TVγ(u) :=
∑
i

∑
j

γij |(∇u)ij | |(∇u)ij | :=
√
(∇yu)2ij + (∇xu)2ij

TV1 = TV (Rudin-Osher-Fatemi, 1992)

• The usual choice for data-fidelity term is Ψ(·) = 1
2∥ · ∥

2
2

J2(u) :=
1

2
∥Au− d∥22 + βTVγ(u)

• ℓ1 − TV criteria, where Ψ(·) = ∥ · ∥1, give rise to more geometric solutions

J1(u) := ∥Au− d∥1 + βTVγ(u)

Our approach: adjust γ to the attenuation H for J1 and for J2.
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The references on ECT regularization do not consider adjustment to attenuation; e.g.

S. Bausson, V. Thomas, P-Y. Joubert, L. Blanc-Féraud, J. Darbon, G. Aubert, Regularized

inversion of a distributed point source model for the reconstruction of defects in eddy currents

imaging, COMPEL Vol. 30 No. 6, 2011, pp. 1777–1791.

A. Lopes Ribeiro, H. G. Ramos, D. Pasadas, and T. Rocha, Regularization Methods to Assess the

Eddy Current Density Inside Conductive Non-Ferromagnetic Media, AIP Conference Proceedings;

2014, Vol. 1581, pp. 1428–1432

A. Lopes Ribeiro, H. G. Ramos, Exploring the Eddy Current Excitation Invariance to Infer About

Defect Characteristics, AIP Conference Proceedings, Vol. 1335 Issue 1, 2011

G. Rubinacci, A. Tamburrino, S. Ventre, Regularization and numerical optimization of a fast eddy

current imaging method, Magnetics, IEEE Transactions, 42(4), 2006, pp. 1179–1182

D. Prémel and P. Baussard. Eddy current evaluation of 3D flaws in flat conductive materials using

a bayesian approach. Inverse Problems, 2002;18(6), pp. 1873–1889.

These methods provide a resolution that rapidly decays with the depth

Focus on defects located at the surface of the inspected material.
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Adaptation to the attenuation

Focus on dkj = hkŭkj + nkj ∀ j ⇐⇒ d = diag(h)ŭ+ n

1 = h1 > h2 > · · · > hM > 0

• J2(u) =
1

2

∑
kj

(hkukj − hkŭkj + nkj)
2 + β

∑
kj

γk|(∇u)kj |

=
1

2

∑
kj

h2
k

(
ukj − ŭkj +

nkj

hk

)2

+ β
∑
kj

γk|(∇u)kj |

Let γk = h2
k

J2(u) =
M∑
k=1

h2
k

N∑
j=1

((
ukj − ŭkj +

nkj

hk

)2

+ β
∣∣(∇u)kj

∣∣)

γk := h2
k for k = 1, . . . , L so that if k > L the noise may not be smoothed.

• J1(u) =
∑
kj

hk

∣∣∣∣ukj − ŭkj +
nkj

hk

∣∣∣∣+ β
∑
kj

γk|(∇u)kj |

γk := hk for k = 1, . . . , L so that if k > L the noise may not be smoothed.
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ŭ : 110× 41 d = diag(h)ŭ+ n hk = e−
k−1
25 1 ≤ k ≤ M SNR=22dB

each row k of the input image ŭ is multiplied by hk before adding the noise

⇒ a stiff degradation of the pixel values (h1 = 1 and hM = 0.0128)

original 110× 41 data d J2, γ = 1 J2, γk = h2
k J1, γk = hk
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Examples on R

d = hŭ+ n h > 0

• J2(u) =
1

2
(hu− d)2 + βγ|u|

û = min

{
0,

|d|
h

− βγ

h2

}
sign(d)

Let d > 0

û = min

{
0, ŭ+

n

h
− βγ

h2

}
• J1(u) = |hu− d|+ βγ|u|

û =
d

h
1l(βγ < h) =

(
ŭ+

n

h

)
1l(βγ < h)

• The sought-after images are piece-wise constant.

The denoising of constant parts is due to the stair-case implied by the regularization.
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Extension to attenuating operators A = GH

The exhibited values of γ when A = diag(h) with {hk} strictly decreasing (attenuation) are

applied to A = GH = Gdiag(h)

This is exact for J2 if G∗G = I

For A attenuating (up to down the image) one can extract a decomposition A = Gdiag(h)

Our approach can be generalized to other observation operators involving stiff degradation

of the pixel values

degraded restored

Known shading and blur
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3. Saddle-point formulation

The main ingredients are obtained using the “dual transportation trick”

Let u ∈ X = RM×N , ∇u ∈ Y = (X,X) and d ∈ Z

I Data-fidelity terms for Z(R)

1

2
∥Au− d∥22 = sup

v∈Z
⟨v,Au− d⟩ − 1

2
∥v∥2

∥Au− d∥1 = sup
v∈Z

⟨v,Au− d⟩ − δB∞(v) B∞ := {v ∈ Z : ∥v∥∞ ≤ 1}

I Data-fidelity terms for Z(C) ∼ Z(R)× Z(R)

1

2
∥Au− d∥22 = max

v∈Z

(
⟨v,ℜ(Au− d)⟩ − 1

2
∥v∥2

)
+max

w∈Z

(
⟨w,ℑ(Au− d)⟩ − 1

2
∥w∥2

)
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∥Au− d∥1 = max
(v,w)∈(Z×Z)

⟨v,ℜ(Au− d)⟩+ ⟨w,ℑ(Au− d)⟩ − δB2,∞(v, w)

B2,∞ :=

{
v = (v′, v′′) ∈ Z × Z : ∥v∥∞ := max

ij

√
(v′i,j)

2 + (v′′i,j)
2 ≤ 1 ∀ (i, j)

}

I Regularization

TVγ :=
∑
ij

γij |(∇u)ij | = sup
p∈Y

⟨p,∇u⟩ − δPγ
2,∞

(p)

P γ
2,∞ :=

{
p ∈ Y : ∥pi,j∥2 =

√
(p′i,j)

2 + (p′′i,j)
2 ≤ γij ∀ (i, j)

}
I Box constraints are easily incorporated
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Equivalent formulations for J1 and J2

arg min
u∈B∞

J2(u) = argmin
u

max
p

1

2
∥Au− d∥22 + β⟨p,∇u⟩ − δPγ

2,∞
(p) + δB∞(u)

= argmin
u

max
p

max
v

⟨v,Au− d⟩ − 1

2
∥v∥2 + β⟨p,∇u⟩ − δPγ

2,∞
(p) + δB∞(u)

arg min
u∈B∞

J1(u) = argmin
u

max
p

max
v

⟨v,Au− d⟩ − δB∞(v) + β⟨p,∇u⟩ − δPγ
2,∞

(p) + δB∞(u)

Similar formulations for data-fidelity on Z(C)

Algorithms: PAPC [Driori, Sabach, Teboulle 15] for J2 and primal-dual [Chambolle-Pock 11]

Solving equivalently argmin
u∈S

{
1
β
Ψ(u; d) + Φ(u)

}
is sometimes faster
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4. Numerical tests

In NDE false alarms are safer than non detection
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Convolution with attenuation and noise

ŭ : 100× 31 d = a ∗ diag(h)ŭ+ n hk = e−0.04(k−1), 1 ≤ k ≤ M (hM = 0.0191)

PSF a – circle, diam(a) = 7 pix., Gaussian noise, SNR = 24 dB

original 100× 31 data d J2, γ = 1 J2, γk = h2
k J1, γk = hk
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Noise-free data

ŭ : 100× 31 d = a ∗ diag(h)ŭ hk = e−0.04(k−1), 1 ≤ k ≤ M (no noise)

ŭ 100× 31 data: d J2, γ = 1 J2, γk = h2
k J1, γk = hk

{γk} as proposed =⇒ no attenuation in the reconstructed images
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Noisy Fourier-Laplace data (one of the models for ECT)

ŭ ∈ R182×90 d = fft2
(
diag(h)ŭ

)
+ n hk = e−0.03(k−1), 1 ≤ k ≤ M hM = 0.0044

SNR= 19 dB

original 182× 90 ℜ(ifft2(d)) J2, γ = 1 J2, γk = h2
k J1, γk = hk
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5. Conclusions and open questions

I When A is a stiff attenuating observation operator, the regularization weights have to

be properly adjusted to each attenuation level.

I This fact is independent of nature of the noise.

I The adjustment of the regularization weights depends on the whole objective function.

• We have derived regularization weights {γk} based only on the attenuation operator

(corresponding to the skin effect in eddy current testing)

They might be improved by considering the whole operator A = GH.

• The ℓ1 based objective function J1 seems to provide more precise results.

• The interplay between β and {γk} according to the noise needs clarification.

• The limit L of the adjustment {γk}Lk=1 has to be explored according to the noise.

• The extension to 3D objects does not present substantial difficulties.
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Thank you for your attention!

Thanks to the Organizers of the Mini symposium for the invitation !
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